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Abstract – About one-third of the world’s anthropogenic emissions is offset by the global 

terrestrial carbon sink, but the strength of this-sink is highly sensitive to anomalously high 

temperature periods. This study used complementary in-situ Atmospheric Potential Oxygen 

data and random forest machine learning to investigate the impact of the anomalously warm-

winter-to-spring transition in 2015/16 and 2019/20 on the biospheric component of the total 

CO2 variation at a mid-latitude study-site – Weybourne Atmospheric Observatory, UK. For the 

2015/16 and 2019/20 winters, there were positive anomalies of 1.52-ppm and 1.40-ppm 

respectively in the biospheric CO2 concentration (relative to the 2011-2019 mean) suggesting 

potential higher respiratory release of CO2 with increasing-temperature. The-increase-in 

ecosystem respiration from the 2019/20 warm-winter was partly compensated by an increase-

in photosynthesis during the following warm spring resulting in a larger seasonal amplitude 

compared to the mean and nearly neutral effects on the annual net CO2. Notwithstanding, the 

CO2 transition-phase from winter to spring was slower in 2015/16 compared to the 2011-2019 

mean, suggesting a delay in the growing-season, with either continued CO2 release by 

respiration from the warm winter months or a reduction in photosynthetic-uptake driven by a 

cold snap-and limited sunlight condition in the subsequent 2016-spring. 
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1. Introduction 
1.1. The global carbon cycle 

The global carbon cycle is made up of carbon exchanges within and between four main 

reservoirs: the atmosphere, land, oceans, and fossil fuels (Figure 1.1) (e.g. IPCC AR4,-2014). 

Carbon dioxide (CO2) fluxes between these reservoirs are stimulated by a variety of natural 

and anthropogenic processes (Sarmiento et-al.,-2010). Anthropogenic processes including 

burning fossil fuels and deforestation, add a large positive net flux to the atmosphere (Ciais-et-

al.,-2013). This source represented 9.80-Gt-C-yr−1 during the 2010s and is also considered to 

be the main cause of significantly large increases in the atmospheric CO2 since 1900 (Lollar,-

2014). Of the carbon released into the atmosphere through fossil fuel combustion 

approximately 56% has remained there, with the other 44% being taken up by natural 

processes, primarily terrestrial and oceanic photosynthetic absorption of CO2 (the ocean has 

the highest-natural flux of 2.40 Gt-C-yr−1 and the terrestrial-biosphere has slightly smaller net 

sink of 0.70-Gt-C-yr−1) (Sarmiento et-al.,-2010). The remaining anthropogenic CO2 in the 

atmosphere has resulted in a greenhouse effect causing the global climate to experience 

unequivocal rates of warming (IPCC,-2014). Based on different emission scenarios, the global 

mean surface temperature is projected to increase between 0.30 and-4.80°C by the end of this-

century (IPCC,-2018). 

 

 
 

Figure 1.1 The global carbon cycle and the relative fluxes of carbon between the reservoirs 

(Source: IPCC AR4,-2014). Numbers inside the boxes is reservoir size (in Gt-C). Natural and 

anthropogenic fluxes (in Gt-C-yr−1) are indicated by black arrows and red arrows respectively.   
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1.2. Terrestrial carbon balance 

The difference between carbon absorption by photosynthesis and release by respiration 

and other disturbances such as fire and deforestation is the net flux of carbon between the 

atmosphere and the terrestrial biosphere. All these processes have resulted in a net sink of 

atmospheric CO2 by terrestrial ecosystems over the last three decades (Le-Quéré-et-al.,-2016). 

The global terrestrial biosphere absorbs ~30% of the anthropogenic-CO2 released every year, 

slowing global warming by mitigating the growth of CO2 in the atmosphere (Le-Quéré-et-al.,-

2016). The terrestrial-biosphere is, in addition, one of the most significant contributors to the 

annual variability of the atmospheric CO2 (Reichstein-et-al.,-2013). However, its connection 

to climate variability is still poorly understood, resulting in interannual residuals varying 

between ± 2.00-Pg-C yr−1 when closing the global carbon balance (Reichstein-et-al.,-2013). 

Part of this residual variation could potentially be explained by the extreme-changes in some 

climate parameters including precipitation, temperature and radiation regimes (IPCC, 2014). 

Extreme changes in those parameters could alter the terrestrial carbon balance more easily than 

gradual climate change owing to typically greater impact strengths in shorter times (Niu et al., 

2014). Temperature extremes, for example, may have a direct and simultaneous effect on 

photosynthesis and respiration (Figure 1.2). Very high-temperatures have various concurrent 

direct influences on plant physiological functions, ranging from disturbances in enzyme 

activity affecting photosynthesis and respiration rates to changes in plant growth (Lobell-et-

al.,-2012; Niu et al., 2014). Similarly, extremely low temperatures could impact plant 

characteristics and increase plant mortality from frost damage (Larcher,-2003). Meanwhile, 

climate models predict global strengthening of stronger or longer-lasting extreme high 

temperature periods in the global warming-scenario (e.g. Fisher-&-Knutti,-2014). Therefore, 

it is critical to gain a better understanding of the-influence of anomalous high-temperature 

periods on the terrestrial carbon balance to better project changes under future heat extremes 

associated with climate change. 
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Figure-1.2. The processes and dynamics underpinning the impacts of (a) extremely cold 

temperature and (b) extremely high temperature on the carbon cycle. Positive/enhancing 

impacts are indicated by a ‘+’ symbol, while negative/reducing impacts are indicated by a ‘-’ 

sign; (in)direct impacts are shown in (dashed) arrows; impact/relationship significance is 

indicated by arrow thickness (high = thick, low = thin) (Source: Reichstein-et-al.,-2013). 

 

1.3. Literature review 

Direct and concurrent impacts of anomalous temperatures on plant physiology could 

influence photosynthesis and respiration processes and hence alter the terrestrial carbon sink. 

This section evaluates the literature regarding the influences of different past extreme high-

temperature events on the net terrestrial carbon sink. 

 

a. Heatwaves and droughts 

Although droughts and heatwaves are both weather extremes on their own, they cannot 

be considered as separate events since droughts are typically the direct consequences of high-

temperature extremes leading to high evaporative demand on ecosystems (Larcher,-2003). 

Heatwaves and droughts could cause modifications in  plant characteristics such as decrease in 

leaf area index, changes in the root–shoot ratio (Mueller-&-Seneviratne,-2012; Bréda-et-al.,-
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2006) or in plant physiological processes including closing stomata to reduce water loss and 

lowering the activity and concentrations of photosynthetic enzymes (Lawlor,-1995; Keenan-

et-al.,-2010). Droughts, therefore, could decrease CO2 assimilation rates (the process by which 

CO2 from the atmosphere is converted to organic compounds through plant photosynthesis) 

and reduce carbon sink strength (Palacio-et-al.,-2014). Usually, the direct effects of droughts 

on plant photosynthesis are greater than those on plant respiration (Fig. 1.2b) (Atkin-and-

Macherel,-2009). 

The 2003 European heatwave is an example of the impact of an anomalous high-

temperature period coupled with drought on the carbon fluxes. Ciais et al. (2005) used satellite 

CO2 remote sensing and atmospheric inverse modelling (which relies on atmospheric 

measurements of greenhouse gases (GHGs), and an atmospheric transport model simulating 

the transport of the gases from theirs emissions source to the location of the measurement) to 

infer GHG fluxes at the Earth surface in order to assess continental-scale changes in Gross 

Primary Production (GPP) – the total amount of carbon absorbed into an ecosystem through 

terrestrial photosynthesis (See-Appendix-A – Figure A1). They estimated a 30% decrease in 

GPP (See Appendix-A – Figure A2), as a consequence of heat stress and decrease in soil 

moisture, which led to plant stomatal closure to minimize transpiration resulting in lower 

photosynthetic rates. This explanation was also supported by other studies (e.g. Reichstein-et-

al.,-2007; Granier-et-al.,-2007). Similarly, there was a decrease in terrestrial ecosystem 

respiration instead of an increase coupled with the high temperatures because water deficit, 

again, could also lower auto- and heterotrophic respiration. The decrease in GPP was not 

entirely offset by the decrease in respiration leading to a net source of CO2 from the terrestrial 

biosphere to the atmosphere in 2003.  

Thompson-et-al.-(2020) also used an atmospheric inversion model to quantify the 

effect of the 2018 European drought on Net Ecosystem Exchange (NEE) which is the net CO2 

exchange with the atmosphere, that is, the CO2 flux from the ecosystem to the atmosphere. 

They found that the NEE in 2018 was slightly more positive by 0.09 ± 0.06-Pg-C yr−1 than the 

last 10-year mean of −0.08 ± 0.17-Pg-C yr−1 indicating a reduction in the terrestrial CO2 uptake 

(See Appendix-A – Figure-A3). These positive NEE anomalies agreed spatially and temporally 

with negative anomalies in soil water. Similarly, Ramonet-et-al.-(2020) used observational 

CO2 data from 48 European stations to investigate the influence of the 2018 heatwave and 

drought on the amplitude of the CO2 seasonal cycles, and found that the usual summer 

minimum in CO2 due to terrestrial carbon sink was 1.40 ppm higher for the 10 stations located 
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in Northern Europe where is most affected by the heatwave (See-Appendix-A – Figure-A4), 

suggesting a reduction in summer carbon uptake as a result of the drought.  

Wolf-et-al.-(2016) combined satellite remote sensing and atmospheric inverse 

modelling to estimate the effects of 2012 warm spring and summer drought on the Net 

Ecosystem Production (NEP) (which is equal to GPP minus the amount of carbon losses in 

ecosystem respiration). They consistently found that there was a big reduction in NEP of -32.00 

± 18.00 g-C indicating a decrease in net CO2 uptake during the severe summer drought (See-

Appendix-A – Figure A5). However, this reduction was compensated by an increase in carbon 

uptake in the previous warm spring. The warmer temperatures during the growing season could 

have enhanced plant growth and vegetation activity leading to increasing net carbon uptake. 

Their findings suggest that the detrimental influences of a prolonged summer drought on the 

terrestrial carbon balance could be naturally mitigated by warmer springs increasing the spring 

carbon sink.   

 

b. Warm winters 

Warm winters are one of the anomalous high-temperature events that could have a 

significant influence on the terrestrial carbon balance. Plant and soil respiration are one of the 

key processes during the winter months that are responsible for the variations in atmospheric 

CO2. Winters with higher temperatures are expected to increase both microbial and plant 

respiration enhancing the respiratory release of CO2 (Buras-et-al,-2020) and thereby 

weakening the annual net terrestrial carbon sink. 

Liu-et-al.-(2019) investigated the impacts of the 2016 anomalously warm winter to 

spring transition period on the net CO2 seasonal cycle across Alaska using ensemble 

atmospheric inverse model simulations and satellite observations. During the warm winter, 

they found that respiration was enhanced more than photosynthesis, leading to lower CO2 

uptake compared to the 2010-2014 mean. However, the warm-winter-induced higher 

respiration was compensated by an increase in photosynthesis during the subsequent warm 

spring, leading to closely neutral effects on the annual net CO2 balance (See-Appendix-A – 

Figure-A6). Their findings indicate that air temperature has a significant impact on net CO2 

balance at high latitudes during winter and spring.  

In another study, Commane et al. (2017) examined a 40-year dataset of hourly 

observational atmospheric CO2 from the land sector at Barrow, Alaska. Their results suggest 

that over the last 41 years, CO2 concentration during October to January period, which is 

primarily from ecosystem respiration, has increased by ~73% ± 10.8% from carbon-rich soils 
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on the Alaska North Slope (See-Appendix-A – Figure-A7), in agreement with rising winter 

temperatures associated with global warming. 

 

1.4. Motivation and objectives 

The review above acknowledges the potential effects of anomalously high-temperature 

events on the terrestrial carbon sink. Heatwaves and droughts in the summer could significantly 

decrease plant photosynthetic rates and hence weaken the net carbon sink. Warmer 

temperatures in the spring, on the other hand, extend the duration of plant activity, favour plant 

growth, and therefore increase net carbon absorption. Whereas warmer winters could increase 

the atmospheric CO2 concentration through increased plant respiration. Additionally, the 

studies mentioned above also highlight the use of inverse modelling as a common method to 

quantify regional terrestrial ecosystem CO2 fluxes. 

While prolonged heatwave events are becoming more frequent, cold snaps are getting 

shorter and less likely, therefore exacerbating the occurrence of warm winters (Frank-et-al.,-

2015). If warm winters occur at an increasing rate as predicted, the amount of winter respiratory 

release of CO2 could be significantly enhanced (Natali-et-al.,-2011; Webb-et-al.,-2016; Zona-

et-al.,-2016). This could potentially shift northern hemisphere ecosystems from net carbon 

sinks to net carbon sources, thus strengthening a positive carbon-climate feedback that 

exacerbates the impacts of climate change (e.g. Huang-et-al.,-2017; Koven et al., 2011; 

Schaefer-et-al.,-2014).  

Despite the potential impacts of warm winters on the carbon balance, however, only a 

few studies investigated this type of high-temperature anomaly. The studies of Liu-et-al.-

(2019) and Commane-et-al.-(2017) discussed above are the only two among a few that 

investigated this and they both focus on the response of high-latitude ecosystems which are 

more sensitive to soil thaw releasing CO2 with increasing winter temperatures. My study builds 

on the reviewed literature but focuses on the response of the terrestrial carbon balance that is 

associated with anomalous warm-winter-to-spring transitions at a mid-latitude regional study 

site. Additionally, instead of using the common model-based method to quantify terrestrial 

biospheric CO2 (bioCO2) as in most studies discussed above, this project will use a novel 

observation-based method using Atmospheric Potential Oxygen. 
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Study objectives: 

a) Investigate whether the bioCO2 concentration of two warm winters (2015/16 and 

2019/20) is higher compared to (1) their ‘counterfactual cases’ (i.e. hypothetical 

2015/16 and 2019/20 winters without the warming); and (2) other normal winters. 

b) Investigate whether the amplitude of the bioCO2 diurnal cycle during 2015/16 and 

2019/20 winters is smaller than that during other normal winters. 

c) Investigate (1) which meteorological variable (temperature, irradiation, relative 

humidity, surface pressure, wind speed and wind direction) is the most important in 

regulating bioCO2 and (2) whether there are any trends between the bioCO2 and those 

meteorological parameters in the two counterfactual cases.  
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2. Study system and justifications 
2.1. Study site  

All atmospheric and meteorological measurements were obtained from Weybourne 

Atmospheric Observatory (WAO). WAO is located on the north Norfolk coast of the UK 

(sample air inlet is 10 m above ground level and 20 m above sea level), approximately 35 km 

north west of Norwich, 170 km north east of London and 200 km east of Birmingham (Figure 

2.1). It is part of the European Union’s Integrated Carbon Observation System and the World 

Meteorological Organization’s Global Atmosphere Watch programme. It has high-precision, 

high-accuracy, continuous and long range measurements of numerous species of atmospheric 

gases (including GHGs, isotopes, and reactive gases) at fine temporal scale. The large range 

and quantity of continuous measurement data being collected at WAO presents a unique 

opportunity to accurately calculate APO in order to separate terrestrial and anthropogenic CO2 

signals.  

 

 
 

Figure-2.1. Location of WAO on the North Norfolk coast, UK (Source: Google Maps). 
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2.2. Study periods 

Both 2015/16 and 2019/20 winters experienced record high temperatures all around the 

northern hemisphere. Subsequently, this study focuses on the variability of the bioCO2 

concentration during these two winter-spring transition periods (August to the end of May). 

 

a. 2015/16 

2015 was the warmest year on record globally, with the northern hemisphere 0.76°C 

above the 1961–1990 mean (WMO, 2016). 2015/16 was the third mildest winter (December to 

February) overall for the UK at 5.50°C, behind only 2007 (5.60°C) and 1989 (5.80°C). 

Temperatures were widely 2.20°C above the 1981–2010 climatology across central and 

southern England (McCarthy-et-al., 2016). 2015/16 Three-month winter (December to 

February) mean temperature at WAO was 1.90°C significantly above the 2011-2019 mean 

(Figure 2.2). 

The driver of this anomalously warm winter is suggested to be the global 2015/2016 El 

Niño (from May 2015 to March 2016), which was one of the strongest El Niño events on record 

(Scaife-et-al.,-2017). Fereday-et-al.-(2008) demonstrated a weak but significant correlation 

between El Niño-like patterns of sea surface temperatures in the tropical Pacific with the warm 

winter (November to February) occurrence in the North Atlantic region as observed in the UK.  

The subsequent 2016 mean spring temperatures in the Southern areas were slightly 

cooler than mean in March (UK anomaly -0.50°C), and further cooler in April (-1.20°C) 

whereas May (+0.90°C) was a warm month for the region (National-Climate-Information 

Centre, -2016).  High-pressure systems established during April and May brought plenty of 

fine, settled weather, particularly in the southeast. At WAO, the temperatures in April and May 

were 1.80 and 0.20°C lower than the 2011-2019 mean (Figure 2.2).   

 

b. 2019/20 

Temperatures were exceptionally high around the world during the 2019/20 winter. It 

was the second warmest winter (December to February) ever recorded for the global average, 

and the warmest for land areas only (Tandon-and-Schultz,-2020). Across the entirety of the 

UK, the mean winter temperature was 1.00°C or higher than the 1981-2010 baseline (Tandon 

and Schultz,-2020). At WAO, the three-month winter (DJF) mean temperature was 

significantly above the 2011-2019 mean by 2.02°C (Figure 2.2).  

Additionally, the UK was struck by three storms in succession in February 2020, 

resulting in prolonged periods of heavy rainfall and extensive floods throughout most of 
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England and Wales (Tandon and Schultz, 2020). Unlike the earlier record-holding year of 

2015/16, this warm winter was not boosted by an El Niño event but by a Foehn effect which is 

a type of warm, dry and down-slope wind that occurs in the lee side of a mountain range 

(Tandon and Schultz, 2020). This phenomenon could be expected during a very mild south-

westerly airflow from the North Atlantic (Kendon-et-al.,-2020).  

High-pressure systems dominated much of the 2020 spring, resulting in sunny and dry 

weather conditions (Tandon and Schultz, 2020), and was the sunniest spring recorded in the 

UK since 1929. At WAO, the temperatures in April and May were 1.70 and 1.80°C higher than 

the 2011-2019 mean. 

 

 
 

Figure-2.2. Monthly temperature (in °C) measured at WAO. The 2015/16 period is shown in 

green, 2019/20 in blue and the baseline mean (01/08/2011-31/07/2019 excluding 01/08/2015-

31/07/2016 as this period includes the 2015/16 warm winter) in red.  The red shading is two 

standard deviation (2𝜎) away from the monthly mean value. 

 

2.3. Quantifying bioCO2 signals using Atmospheric Potential Oxygen 

Having an accurate method for determining bioCO2 signals plays an important role in 

achieving the key objectives of this study. As seen in the literature review, one common method 
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to quantify bioCO2 signals is inverse modelling which relies heavily on the atmospheric 

transport model employed. The transport model first estimates contributions of other 

components within the global carbon cycle to the variability of the observed CO2, namely 

anthropogenic emissions, atmospheric transport, and air-ocean CO2 fluxes (Regnier-et-al.,-

2013; Gurney-et-al.,-2004; Gurney-et-al.,-2008; Peylin-et-al.,-2013). These other components 

are then subtracted from the observed atmospheric CO2 to calculate the inverted biospheric 

signals (Ballantyne-et-al.,-2015). Hence, any error in the calculations of the fluxes in these 

components could result in biases in the inverted bioCO2 signals (Goeckede et al., 2010b).  

The main bias in estimating regional-scale bioCO2 signals using this model-based 

approach is associated with the uncertainties in estimating the anthropogenic component using 

atmospheric transport models. These models use bottom-up anthropogenic emission 

inventories to compute the regional anthropogenic contribution (Oney-et-al,-2017). This 

inventory method calculates GHG emissions using emission factors which are vulnerable to 

large uncertainties and biases because they are based on the raw materials used for various 

economic activities, rather than the actual emissions that are generated by such economic 

activities (Pickers,-2016). To prevent some of the drawbacks of using the model-based method 

to estimate anthropogenic CO2 which could then lead to large uncertainty in estimations of 

biospheric signals, an observation-based estimation of the anthropogenic component can be 

applied (Oney-et-al,-2017). In this study, Atmospheric Potential Oxygen will be used as a 

tracer for anthropogenic CO2 source.  

When a terrestrial ecosystem removes 1 mole of CO2 from the atmosphere, it also 

releases 1.1 moles of oxygen (O2) (Severinghaus,-1995). CO2 and O2 are exactly anticorrelated 

(with a global average molar ratio of 1.1) for all terrestrial biosphere processes (photosynthesis, 

respiration and combustion) (See Appendix A – Figure-A9). This relationship defines a 

quantity known as Atmospheric Potential Oxygen (APO) (APO = O2 + 1.1 × CO2) (Stephens-

et-al.,-2000). Since O2 and CO2 variations from terrestrial biosphere processes are anti‐

correlated (Figure-2.3), they will cancel each other out in APO (Stephens-et-al.,-2000). APO 

is, therefore, conservative with respect to all terrestrial biospheric processes. Variations in APO 

data therefore not only indicate variations in the exchange of O2 and CO2 of the ocean-

atmosphere system on seasonal and longer timescales, but also variations in fossil fuel 

emissions on both shorter and longer timescales (Pickers,-2020), since fossil fuel emissions 

have O2:CO2 molar ratios different from that of the terrestrial biosphere. The applicability of 

APO as a tracer for anthropogenic CO2 has been shown to be more precise, more accurate, less 

costly than other existing methods (e.g.-using CO) and can be applied independently from 
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radiocarbon measurements (Pickers,-2016; Pickers-et-al.,-2020). All these qualities make this 

APO-based method an excellent approach to derive the anthropogenic CO2, from which the 

bioCO2 signal and its uncertainty can easily be estimated. 

 
 
Figure 2.3. Daily timeseries of atmospheric CO2 in ppm (top panel), O2 in ‘per meg’ units 

(middle panel), and APO in ‘per meg’ units (bottom panel) from WAO between 01/08/2019–

31/07/2020. Each panel shows seasonality that is driven mostly by terrestrial biospheric 

processes (CO2 and O2) and oceanic processes (O2 and APO). Shorter term variability in APO 

is driven by diurnal processes, changes in meteorological conditions, synoptic-scale variability, 

and fossil fuel CO2 emissions. 

2.4. Using random forest to create counterfactual cases 

To investigate how bioCO2 concentrations of the two winters 2015/16 and 2019/20 

would vary without the warming, random forest (RF), which is an ensemble decision tree 

machine learning (ML) method (Breiman,-2001), will be used to create their ‘counterfactual 

cases’. The decision tree splits several observations using a binary algorithm into two 
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homologous groups, known as branches, repeating the process until the tree is fully grown (or 

till the branch node purity is achieved) (Tong-et-al.,-2003). This kind of algorithm is known to 

be ‘greedy’ (Biau-et-al.,-2008) and could lead to very deep trees where the terminal splits only 

evaluating two observations (Breiman,-2001). As a result, this type of model normally deals 

very poorly with new data which was not used to train the model (Tong-et-al.,-2003). The 

decision tree method, therefore, is very sensitive to overfitting (Kotsiantis,-2013). RF 

overcomes this problem by using a technique known as bagging – a process that randomly 

samples observation and influencing variables with replacement to create several individual 

decision trees from a training dataset (Friedman-et-al.,-2001). All the trees’ outputs are then 

combined for prediction (Figure 2.4) (Caruana-and-Niculescu-Mizil,-2006). 

 

 
 

Figure 2.4. Conceptual diagram of an RF model (Source: Grange-et-al.,-2018). From the 

training series, multiple out-of-bag samples (a set which results from the bagging process) are 

created and multiple decision trees are grown from those samples. All the trees’ outputs are 

then combined for one prediction. The test set which is withdrawn from the training phase will 

then be used to evaluate the model prediction 

.  

RF is one of the few ML methods whose training process can be inspected and 

interpreted (Kotsiantis,-2013). RF models can produce partial dependence plots which 

demonstrate the relationships between observation and influencing variables, and a variable 

importance graph showing the importance of each influencing variable in predicting the output 

(Friedman-et-al.,-2001; Jones and Linder, 2015). RF can be used in unsupervised regression 

and is known to be simpler to operate than other decision tree techniques (Immitzer-et-al.,-
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2012). The combination of these attributes has made RF a perfect ML technique to create 

counterfactual predictions and obtain objective 3 for this project.   



 19 

3. Method 
3.1. Data 

Atmospheric O2 at WAO is measured with a Sable Systems International Inc. ‘Oxzilla 

II’ electrochemical fuel cell analyser and CO2 is measured with a Siemens Corporation 

‘Ultramat 6E’ non‐dispersive infrared analyser. Both gases are measured every two minutes. 

Atmospheric CO2 measurements are reported in ppm while O2 measurements are reported as 

(O2/N2) ratios in per meg units since O2 is not a trace gas and its mole fraction can be altered 

by changes in the concentration of other gases, such as CO2 (Pickers-et-al., 2020).  

There is a continuing increase (decrease) in the atmospheric CO2 (O2) data caused by 

anthropogenic CO2 emissions (atmospheric O2 is declining as combustion consumes O2). To 

eliminate this long-term increasing trend in CO2 (decreasing trend in O2) data the slope of the 

CO2 (or O2) concentration-time linear regression was subtracted from CO2 (or O2) data (See 

Appendix C for more details on detrending the data). 

APO is a tracer invariant to terrestrial biosphere-atmosphere exchange (See Appendix 

A – Figure A8) and was calculated from measurements of atmospheric O2 and CO2 using the 

aforementioned R script: 

𝐴𝑃𝑂 = 𝑂! +
"#.#
%.!%&'

× (𝐶𝑂! − 350)                 Equation 1 

where -1.1 is an estimate of the mean O2:CO2 ratio for land photosynthesis and respiration, 

0.2095 is the mole fraction of O2 molecules in dry air, and 350 is an arbitrary reference (Pickers, 

2016). Multiplying CO2 by ‐1.1 and dividing by 0.2095 converts the CO2 data from ppm to per 

meg units (Lueker-et-al.,-2003). 

The fossil fuel (anthropogenic) component of total atmospheric CO2 concentration 

(ffCO2) in ppm at WAO was calculated using hourly APO data: 

𝑓𝑓𝐶𝑂![𝐴𝑃𝑂] =
()*"()*!"

+#$%
                  Equation 2 

where 𝐴𝑃𝑂 is the atmospheric value calculated from Equation 1,  𝐴𝑃𝑂,- is the hourly APO 

‘background’ or baseline values (i.e. values that are representative of the well-mixed 

troposphere of the wider region) with 1-week smoothing, which were determined using a 

statistical baseline fitting method using the ‘rfbaseline’ function from the ‘IDPmisc’ package 

in R, and 𝑅()* is the APO:CO2 combustion ration for fossil fuel emissions at WAO. The 

APO:CO2 emission ratio used in this study was chosen to be a fixed ratio of -0.30-mol-mol-1 

as in Pickers-et-al. (2020). 
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The hourly estimates of bioCO2, i.e. the atmospheric CO2 variability driven by regional 

CO2 fluxes from the terrestrial biosphere via photosynthesis and respiration, in units of ppm 

were produced from: 

𝑏𝑖𝑜𝐶𝑂![𝐴𝑃𝑂] = 𝐶𝑂! − 𝑓𝑓𝐶𝑂![𝐴𝑃𝑂] Equation 3 

where CO2 is the total atmospheric CO2 concentration in ppm and 𝑓𝑓𝐶𝑂![𝐴𝑃𝑂] is calculated 

from Equation 2. 

One of the main assumptions of this study is that bioCO2 signals are all terrestrial 

signals. BioCO2 could also be hugely influenced by the ocean. However it takes about a year 

for ocean-atmospheric carbon to reach equilibrium. Therefore oceanic influences on bioCO2 in 

the monthly signals observed in this study are considered to be negligible.  

To address how the 2015/16 and 2019/20 warm winters affected the seasonal carbon 

cycle at WAO, the bioCO2 concentration of the warm winter periods (01/08/2015-31/07/2016 

and 01/08/2019-31/07/2020) were compared to the 01/08/2011-31/07/2019 baseline mean 

(excluding the 01/08/2013-31/07/2014 period due to large gaps in APO data). The data of each 

period was normalised by subtracting the 9-month mean value from the bioCO2[APO] data 

(negative values indicate net CO2 uptake by the regional terrestrial biosphere and vice versa). 

The amplitudes of the CO2 diurnal cycle were analysed by calculating the difference of 

the mean night-time concentrations (01:00-05:00 UTC) compared to the mean daytime values 

(11:00-15:00 UTC) for each day. 

 

3.2. Modelling  

A random forest (RF) model was trained for the period from 01/01/2011 to 31/07/2019 

excluding the 01/08/2013-31/07/2014 period (big gaps in APO data) and the 01/08/2015-

31/05/2016 period (predicted period is omitted from the training model). The ‘rmweather’ 

Package in R was used for this process. Similar to Grange et al. (2018), in my study, the number 

of trees for the RF models was fixed at 300, the minimal node size was five, and the number 

of variable split at each node was the default for regression mode: the rounded down the square 

root of the number of independent variables which in this example was three. All trees used 

the same influencing variables to predict daily bioCO2. The influencing variables were: hourly 

meteorological observations (wind speed, wind direction, air temperature, relative humidity 

and atmospheric pressure), which were measured at WAO; temporal factors (day of the year, 

day of the week, hour of the day); and hourly 24-hour long HYSPLIT (Hybrid Single Particle 

Lagrangian Integrated Trajectory) model backwards run trajectories, clustered into 7 groups 
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(shown in Figure-3.1) using k-means clustering and the ‘Openair’ package in R. Hourly 

bioCO2[APO] calculated in Equation 1 was used as the pollutant of interest and in the RF 

models as the obsevation variable. 80% of the input data was used to train the model and the 

other 20% was used to validate the model predictions. 

 

 
Figure-3.1. The seven back trajectory clusters for the WAO receptor location between 

01/01/2011-31/07/2020  which were used by the RF bioCO2 models. The clusters are decoded 

in Appendix-B – Table-B1 and the percentages-indicate the frequency of occurrence.  

 

The trained model was then used to predict the ‘counterfactual bioCO2’ that would have 

been observed at WAO during the periods 01/08/2015-31/05/2016 and 01/08/2019-31/05/2020 

if the warm winters had not occurred. These two counterfactual predictions were then 

compared to their respective observation-derived bioCO2[APO] values to further estimate the 

impact of warm winter detected at WAO. 

Partial dependency and variable importance graphs were also created using functions 

in the ‘rmweather’ package to achieve objective-3. 

 

3.3. Uncertainty 

Since the bioCO2 values were calculated by subtracting ffCO2[APO] from the measured 

CO2, and the measure of CO2 was essentially assumed to be correct (there is some uncertainty 

in the CO2 measurement, which was already accounted for in the measurement uncertainty of 

APO part and in any case is negligible, < 1%), the sources of uncertainty in bioCO2 were, 
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therefore, considered to be the same as in the continuous APO-based ffCO2 quantification 

approach which are associated with each term in Equation 2. Calculations of ffCO2[APO] 

uncertainties were explained in details in Pickers-et-al.-(2020) and summed up in Table-3.1. 

 

Table-3.1. Hourly uncertainty estimates for ffCO2[APO] at WAO (Pickers-et-al.,-2020). 

 
 

 Since a mean RAPO value was used in the ffCO2[APO] calculation for this study instead 

of time-varying RAPO values, the uncertainty associated with this ratio is doubled from 23% to 

46%. This increases the total uncertainty of ffCO2[APO] or bioCO2[APO] from 36% to 54% 

for the hourly value Pickers-et-al.-(2020), which decreases to 10% for the daily value and 8% 

for the monthly value. The estimated 10% value for daily uncertainty was calculated by 

squaring the hourly uncertainties values at 54%, summing them all-together over 24-hours, 

taking the square root of the total 24-hour uncertainty value, and calculating how large this was 

relative to the total-ffCO2 value over 24 hours. The monthly uncertainty was estimated-

similarly over the number of hours in each specific month. 

In the ML analysis, the same bioCO2[APO] uncertainties as stated in Table-3.1 were 

used. The uncertainty associated with the ML algorithm was also considered. Additional 

uncertainty of ±45% (±40%) was assigned to the 2015/16 (2019/20) ‘counterfactual case’ to 

account for this. This uncertainty was estimated by comparing the predicted ‘counterfactual 

case’ to the predicted 01/08/2018-31/04/2019 bioCO2 , which was generated from a separate 

model that was trained on the 01/01/2011‐31/07/2018 data (excluding the 01/08/2015-

31/05/2016 period as it includes the 2015/16 warm winter). Predictions for normal years from 

model running on previous years of data in this way do not have erroneous warm winter signals 

(which should occur if the model prediction was consistently prone to overestimation) (Pickers-

et-al.,-2020). 

The differences between the bioCO2 results of each period were compared to the 95% 

confidence-interval (CI; 95% CI = standard deviation × 1.96) limits of the data; differences 
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between each period results were deemed significant if they exceeded the mean CIs of the time 

series data.  
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4. Results and discussion 
4.1. Seasonal cycles 

The bioCO2[APO] seasonal cycle observed at WAO was affected by the warm winters 

during the 2015/16 (green line) and 2019/20 (blue line) periods (Figure 4.1). During these two 

periods, there was an increase in the seasonal amplitude compared to the mean (red line) 

(Figure B1 in the Appendix B and figure 4.1). While the overall patterns of both periods 

compared well with the mean, the high bioCO2 concentrations normally observed between 

October and February were further increased between December and February. For the 

2019/20 period, the monthly CO2 anomalies (blue line minus red line) were 0.70 ± 0.23-ppm, 

1.61 ± 0.52-ppm, and 1.74 ± 0.42-ppm in December, January and February respectively, which 

correspond to 16%, 32% and 40% increases from the mean bioCO2. Similarly, in the 2015/16 

series, the monthly CO2 anomalies (green line minus red line) were 1.80 ± 0.21-ppm, 1.42 ± 

0.55-ppm, and 1.21 ± 0.47-ppm corresponding to 39%, 35% and 28% increases from the mean 

bioCO2 for those three winter months respectively. Even though these increases were not 

statistically significant (at-95%-confident level (CL)), they could still be practically significant 

in that they could be associated with a stronger net CO2 release during this period, possibly 

coupled with a strong warming‐induced ecosystem respiration enhancement. Indeed, it is 

noticeable that during the three winter months, the bioCO2 concentration of both periods shared 

the same patterns with their temperature trends (Figure-2.2 and 4.1). The 2019/20 three-month 

winter had higher temperatures and higher bioCO2 around the beginning of December period 

while the 2015/16 trends peaked around February. Similar to Commane-et-al.-(2017) and Liu-

et-al.-(2019) which focused on high-latitude responses, this mid-latitude study also found an 

increase in terrestrial CO2 with increasing winter temperatures supporting the idea that warm 

winters could cause ecosystems to potentially become a net CO2 source. 

The net increase in bioCO2 in the 2019/20 winter period was partially compensated by 

a greater increase in CO2 uptake in the following April and May 2020. The observation 

comparison suggests that the monthly CO2 anomalies in April and May 2020 were about -1.91 

± 0.12 ppm (-75% relative to the mean bioCO2) and -1.52 ± 0.01-ppm (-53%) respectively 

(Figure 4.1). The statistically insignificant negative differences (at-95%-CL) in these two 

months could possibly be promoted by extremely warm and sunny conditions with moderate 

rainfall deficits in April and May-2020. It is possible that the productivity gaining from 

increasing photosynthesis, and earlier budburst (Badeck-et-al.,-2004; Salmon-et-al.,-2016) 
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with increasing temperature and sunlight outweighed the carbon release from warming‐

induced enhancement in ecosystem respiration during those two months.  

Unlike the 2019/20 period, there were no negative anomalies observed in spring 2016 

but marginally higher bioCO2 concentrations than the mean by 0.53 ± 0.84-ppm (+16%), 0.82 

± 0.41 ppm (+35%) and 0.35 ± 0.20-ppm (+14%) in March, April and May respectively. These 

positive anomalies were not statistically significant (at-95%-CL) but again could still be 

practically significant. The 2015/16-spring-period in England was characterized by a 

particularly cold and dry snap with limited sunlight in April and May, limiting plant growth, 

and therefore decreasing the carbon uptake, resulting in a higher concentration than the mean. 

Additionally, this period had a settled weather system with light wind patterns, which could 

decrease dispersions of CO2-enriched air from any perturbation of biogenic CO2 fluxes 

resulting in a weather-related atmospheric CO2 enrichment (Higuchi et al., 2003). 

These analyses suggest that temperature could play an important role in controlling 

winter-spring net carbon in the mid-latitude region. The “warmer spring, bigger spring carbon 

sink” mechanism could still be applied in my study. Similar-to Wolf-et-al.-(2016) and Liu-et-

al.-(2019) discussed in the literature review section, the results of this study further highlight 

the importance of the spring carbon sink as a natural mitigation for processes increasing CO2 

or lowering the terrestrial carbon uptake. Temperature-influenced increases in terrestrial CO2 

uptake in spring has been recognized as one of the main processes regulating the strength of 

terrestrial carbon uptake in the northern hemisphere in past decades (Ciais-et-al.,-2019). 

However, the sensitivity of terrestrial CO2 uptake to temperature during spring time has been 

shown to be weakening in recent decades (Piao-et-al.,-2017).  
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Figure 4.1. Monthly APO-derived bioCO2 concentration (in ppm) at WAO for periods running 

from the beginning of August to the end of May. The 2015/16 period is shown in green, 

2019/20 in blue and the baseline mean (01/08/2011-31/07/2019 excluding the 01/08/2015-

31/07/2016 period as this period includes 2015/16 warm winters and the 01/08/2013-

31/07/2014 period due to large gaps in APO data) in red. The green and blue shadings are 

monthly uncertainty estimates of ffCO2[APO] at WAO for the 2015/16 and 2019/20 periods 

respectively; the dark red shading and the light red shading are respectively 1𝜎 (68%-CI)  and 

2𝜎 (95% CI) away from the monthly mean value.  

 

4.2. Diurnal cycles 

Figure-4.2 displays the diurnal cycles of bioCO2 for each month in the August-May period. 

The concentration of bioCO2 experienced an overnight increase. The observations at WAO are 

taken from a height of 10-m above ground level, thus always within the well-mixed Planetary 

Boundary Layer (PBL). The diurnal rectifier effect, therefore, could have a role in the observed 

diurnal cycles (Stephens-et-al.,-2000). During daytime in the growing season, there was a rapid 

decrease in CO2 concentration due to photosynthetic processes and rapid development of the 

surface turbulent layer as the ground heats up (Higuchi et al., 2003). During night time, 

photosynthesis halts while soil and plant respiration begins, resulting in a net source of CO2. 

This CO2-enriched air builds up in a stable nocturnal boundary layer formed by a temperature 
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inversion as a result of surface radiative cooling, leading to a rapid increase in CO2 

concentration during the night (Higuchi et al., 2003). Shortly after sunrise, the stable layer 

collapses causing the accumulation to stop and the cycle repeats (Higuchi et al., 2003). This 

rectifier effect appears to be less intense during the winter season (December–February) 

(Figure 4.2) resulting in a lower amplitude of the diurnal cycles by around 7.00-ppm as seen in 

Figure 4.3 as the PBL remains lower for longer due to lower temperatures (Stephens et-al., 

2000), and terrestrial photosynthesis activity is also reduced due to decreased sunlight hours. 

 

 
 

Figure 4.2. Diurnal cycles for each month in the August – May period. The green, blue and 

red lines are 2015/16, 2019/20 periods and the baseline mean respectively. The green, blue and 

red shadings are each period’s respective uncertainty (2𝜎 away from the hourly mean values).  
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The monthly amplitude of the daily cycle observed at WAO was noticeably 0.80 ppm 

smaller than the mean in January-2020, and even 1.91 ppm smaller in February (Figure 4.3). 

Following that were increases in the amplitude of  1.12-ppm and 1.54-ppm in April and May-

2020 respectively. It turns out that the variability in the observed diurnal CO2 amplitude could 

be primarily driven by the night-time CO2 concentration (Schmidt-et-al.,-2014), which is 

regulated mostly by the daily changes in PBL dynamics influenced by synoptic weather 

conditions as suggested by previous studies (Xueref-Remy-et-al.,-2018,-Fang-et-al.,-2014; 

Garcia-et-al.,-2012; Gerbig-et al., 2006).  

 

 
 

Figure 4.3. The monthly amplitude of the CO2 daily cycles (in ppm) for periods running from 

the beginning of August to the end of May the next year. The green, blue and red lines are the 

2015/16, 2019/20 periods and baseline mean respectively. The red shading is 2𝜎 away from 

the hourly mean values or 95% CI. 

 

The months of January and February-2020 were exceptionally stormy with mean 

daytime and night-time wind speeds of 9.80-m-s-1 and 9.70-m-s-1 respectively for January and 

10.00-m-s-1 and 11.00-m-s-1 for February at WAO (Appendix-B – Figure B2 and B3). 

Unsettled and windy conditions tend to destabilise atmospheric stratification allowing more 
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mixing, lowering night-time concentration, and therefore producing a smaller diurnal cycle of 

bioCO2 (Fang-et-al.,-2014). April and May-2020 were exceptionally warm, sunny and calm 

favouring photosynthesis, and resulting in an increase in the surface uptake by ecosystems and 

therefore a decrease of the daytime concentrations while increasing respiration and stabilizing 

stratification near the surface at night allowed high concentrations of CO2 to accumulate. This 

resulted in the increases in the bioCO2 daily amplitude in those two months. 

 

4.3. Random forest prediction 

a. Model evaluation 

The predictive RF model performed well for WAO station. The bias and R2 value for 

the model are displayed in Appendix-B – Figure B4. The R2 value is 0.74. This suggests that 

bioCO2 concentrations at WAO predicted by an RF model with a combination of surface 

meteorological conditions, temporal factors and back trajectory air mass clusters are reliable.   

The most important influencing variable for bioCO2 concentrations is demonstrated in 

Figure-4.4. Day Julian and temperature were the most important variables influencing the 

variability in bioCO2 concentrations. This suggests that temperature and the seasonal cycle 

have a significant impact on bioCO2 concentrations. The least significant variables in the RF 

model were the day of the week and wind speed, but both variables were still added to the 

predictive performance of the model. Including variables with low predictive potential does 

not negatively affect the accuracy of the model, hence they were retained in the model. Wind 

direction was one of the most unimportant variables. This could be because its hourly 

aggregation interval might be too long to adequately represent the atmospheric motion. Wind 

direction, hence, did not add much information to the bioCO2 predictions of the model. 
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Figure 4.4. Variable importance plot for bioCO2 for WAO. 

 

b. ‘Counterfactual cases’ of 2015/16 and 2019/20 winters 

Overall, the model predictions for three different periods were less variable than their 

APO-derived observations (Figure 4.5). The trend of the prediction for a normal period 

(2011/12 in this case) fitted quite well with that of the observation (Figure-4.5a). This again 

showed that the model-performed well with the data obtained from WAO and did not suffer 

from overfitting. Sustained increases in the daily bioCO2[APO] relative to the counterfactual 

predictions from December to February averaging 1.81 ± 0.23-ppm (+26% relative to the 

counterfactual prediction) and 2.10 ± 0.42-ppm (+30%) in the 2015/16 and 2019/20 periods 

respectively were found (Figure 4.5). These anomalies again confirm the potential effect of the 

warm winters on the bioCO2 at WAO. The influence of warm winters on bioCO2 detected at 

WAO was further highlighted in the cumulative signal, shown in Figure-4.6, which 

accumulates differences in the short‐term variability of the daily values.  Both warm winters 

have statistically significant sharp increases (at 95%-CL) in the cumulative differences. The 

2015/16 trend continued to increase slowly around April to May while the 2019/20 difference 

decreased around springtime. These are similar to what has been observed in the previous 
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seasonal observational interpretations (Figure-4.1). It is also interesting to notice the influences 

of the 2018 cold-period from mid-February to the beginning of March associated with ‘Beast 

from the East’ event on bioCO2 concentrations in figure-4.6 (the yellow line). There was a 

decrease in the cumulative differences indicating the-bioCO2[APO] was smaller than the 

predicted counterfactual case for that period, possible coupled with low temperatures reducing 

plant respiration and heavy snow cover hindering spring growth. 
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Figure 4.5. Daily bioCO2 concentration (in ppm) of APO-derived observations and model 

predictions for the period from the beginning of August to the end of May the following year. 

Orange, green and blue lines are APO-derived concentrations for the 2011/12, 2015/16 and 

2019/20 periods respectively; brown lines are model predictions for each specific period (the 

predicted period is omitted from the respective training model). Orange, green and blue 

shadings are hourly uncertainty estimates for ffCO2[APO] for respective periods; brown 

shading indicates the total uncertainty in the analysis (i.e. the combined uncertainty from 

ffCO2[APO] quantification and the ML). 

winter 
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Figure 4.6. The-green, blue and yellow lines are cumulative daily bioCO2 differences (in ppm) 

(APO-derived observations minus modelled) for the 2015/16, 2019/20, and 2017/18 periods 

respectively. The black lines are the cumulative bioCO2 differences for individual-periods from 

the 01/08/2011‐31/07/2019 (excluding the 01/08/2015-31/07/2016 period as this period 

includes 2015/16 warm winters and the 01/08/2013-31/07/2014 period due to large gaps in 

APO data) and the red line is the mean of all these individual periods. Uncertainties are as 

follows: the red shading is the ± 2σ (95%-CI) standard deviation of the 2011‐2019 mean; the 

green and blue shadings indicate the total uncertainty in the analysis (i.e. the combined 

uncertainty from bioCO2[APO] quantification and ML) for the 2015/16 and 2019/20 periods 

respectively. 

 

c. Explaining the relationships between bioCO2 and meteorological variables in the 

counterfactual cases. 

One of the advantages of RF that other ML techniques do not have is the ability to 

investigate and explain the models. Partial dependence plots are used to analyse RF models by 

explaining how influencing variables were used in generating prediction (Jones-and-Linder,-

2015). The application of partial dependence plots, hence, could be used to explain some 

general physical and chemical processes. For example, in figure 4.7, bioCO2 concentration is 
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lower during daytime and higher during night time mainly due to the rectifier effect as 

explained above, and wintertime concentrations are higher than other seasons resulting from a 

combination of a greater CO2 source from ecosystem respiration and atmospheric stability 

during the winter.  

 

 
 

Figure 4.7. Partial-dependence plots of the influencing-variables used in bioCO2 RF-

model at WAO. y (vertical) axes for each plot represent the bioCO2 concentration and x 

(horizontal) axes show the corresponding influencing variables. 

 

The pattern of irradiation component was similar to air temperature (Figure 4.7). The 

similar shapes of bioCO2 variations with these variables describe rather the same process. 

Increasing temperature with increasing irradiation could have favoured photosynthetic 

processes and therefore increased the CO2 uptake rate leading to lower bioCO2 concentration. 

At temperatures between 10.00 and 20.00°C, photosynthetic enzymes work at their best 



 35 

(Qaderi-and-Reid,-2008), resulting in high photosynthetic rates leading to a decrease of 12.00-

ppm in the bioCO2 concentration. At temperatures above 20.00°C, the concentration of bioCO2 

plateaus at 386 ppm because above 20.00°C photosynthetic enzymes lose their shape and 

functionality and therefore do not work efficiently anymore (Qaderi-and-Reid,-2008). It is also 

noticeable that below 10.00°C, the bioCO2 concentration increases with increasing 

temperature. Temperatures below 10.00°C are representative of the winter period when 

respiration is the dominant temperature-dependent process that drives the variability of bioCO2. 

Relative humidity (RH) was the third important variable in predicting the bioCO2 

variations (Figure-4.4) and directly proportional to the bioCO2 concentration (Figure-4.7). RH 

is a percentage measurement of the amount of moisture in the air relative to maximum 

saturation (how much moisture the air can hold when it is saturated) representing how much 

water vapour is in the air relative to how much that volume of air is capable of holding. The 

closer to 100% the RH is, the more humid the atmosphere. Therefore, decreasing RH results in 

increasing vapour pressure deficit (VPD) which is the difference (deficit) between the amount 

of water vapour in the air and maximum saturation. An increase in VPD could lead to stomatal 

closure in plants to reduce water loss. This stomatal closure could lead to a reduction in 

photosynthetic rates and therefore lower CO2 uptake (Grossiord-et-al.,-2020). Hence, the lower 

RH, the higher VPD, the lower CO2 uptake, hence the more elevated the CO2 concentration in 

the atmosphere as seen in figure 4.7. 

The back trajectory cluster variable was important for WAO monitoring sites . The two 

air masses 2 and 6 representing local flows from Northern Ireland and a strong westerly flow 

from the Atlantic, respectively, have the highest concentration (Figure-4.7 and 3.1). This 

indicates that air masses originating from western UK crossing mainland England could create 

high concentration bioCO2 conditions at WAO.  

Pressure and wind speed were less important for the RF model but their partial 

dependence plots still demonstrate what would be expected. Although the pressure component 

showed an opposite pattern to windspeed (Figure-4.7), they both had somewhat the same 

processes. High surface pressure general leads to settled weather conditions with light winds 

resulting in decreased atmospheric dispersion and therefore lower bioCO2 concentration and 

vice versa with low surface pressure. 
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5. Conclusions 
5.1. Summary of key findings 

 A better understanding of the seasonal response of the terrestrial biosphere to weather 

extremes associated with climate change provides important insights for future carbon-climate 

feedbacks and their consequences on atmospheric CO2 dynamics in the northern hemisphere. 

This study has investigated the influences of 2015/16 and 2019/20 warm-winter-to-spring 

transition periods on the bioCO2 concentrations derived from observational APO. The specific 

conclusions relating to the three objectives of this study are as follows:  

a. My study found that the increase in the seasonal maxima of bioCO2 in 2015/16 and 

2019/20 winters (DJF) is significant (at 95% CL) compared to their respective 

counterfactual cases (2015/16 and 2019/20 hypothetical winters without the warming) 

(Figure 4.6) but not significantly different (at 95% CL) from the 2011-19 mean (Figure 

4.1). This result, however, could still be considered practically significant, indicating 

that warm winters could potentially make mid-latitude ecosystems a net source of CO2. 

The apparent increase in CO2 release in the 2019/20 warm winter appears to be partially 

offset by an apparent higher CO2 uptake in the following warm spring (Figure 4.1). 

This results in a larger seasonal amplitude compared to the mean and nearly neutral 

effects on the annual net CO2. In contrast, the 2015/16 spring period at WAO 

experienced a slightly weaker net CO2 uptake than the mean (Figure 4.1), suggesting a 

delay in the growing season, with either continued CO2 release by respiration from the 

warm winter months or a reduction in photosynthetic uptake driven by a cold snap and 

limited sunlight in the subsequent 2016 spring.  

b. The minimum of the diurnal cycle occurs in the afternoon (14:00 to 17:00-UTC) when 

the PBL is well mixed, and during seasons when vegetation photosynthesis is active 

(Figure 4.2 and 4.3). It appeared that it was not the increase in temperature during the 

warm winter but the synoptic-related PBL dynamics that mainly influenced the 

amplitude of the bioCO2 diurnal cycle. The amplitude of the diurnal cycle of bioCO2 at 

WAO in 2019/20 was smaller and larger than the mean coupled with windy and calm 

weather conditions respectively. 

c. The RF performed well with an R2-value of 0.74. Temperature, Julian day (the seasonal 

component), and RH cluster were generally the most important predictors for bioCO2 

concentration (Figure 4.4). To explain the model predicted trends, partial dependence 

plots were used (Figure 4.7). The plots indicated that elevated bioCO2 concentrations 
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occur in poor dispersion conditions (low windspeed) as well as at low temperatures and 

high RH.  

 

5.2. Limitations and recommendations for further research 

Apart from temperature, soil moisture is another important environmental parameter 

controlling terrestrial carbon exchange, especially in the late growing season because water 

stress could affect plant physiology and therefore their primary productivity and respiration 

rate (Liu et al., 2019). However, that variable has not been included in this study due to a lack 

of available data. Future continuations of this project should further investigate the influences 

of temperature, soil moisture and hydrology of warm winters on the bioCO2 signals in the mid-

latitudes. 

This study has also presented a novel approach for deriving bioCO2 from a top‐down 

fossil fuel CO2 quantification method using APO-data. One of the assumptions in this study is 

that the bioCO2 signals derived with this method are all terrestrial signals. However, bioCO2 

could also be significantly influenced by the ocean. Quantifying contributions of different 

components of the bioCO2 signal (photosynthesis, respiration, oceanic influences) remains a 

difficult challenge  and requires other types of data such as satellite observations which can 

complement surface measurements to better characterize spatial-variability.  

Another limitation with using observation-based APO to derived bioCO2 is that it relies 

on very high-precision atmospheric O2 measurements which are technically very challenging 

(Pickers,-2016). This has severely restricted APO’s widespread implementation and the 

existing network of atmospheric O2 measurements is sparse, with almost no measurement sites 

being ideally-located to capture emissions from urban regions (Pickers,-2020).  This results in 

the spatial limitations of this study which is confined to just one study location. To increase the 

spatial scale covering most warm-winter affected locations for further study on this topic, other 

observation-based methods, such as CO which is a more commonly measured trace gas, could 

be used, to quantify bioCO2 as in-Oney-et-al.-(2017). 
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7. Appendices 
7.1. Appendix A: Results from additional journal papers 
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7.2. Appendix B: Additional results from this study. 

Table B1. The seven synoptic scale weather type classifications (WTC) used in this study  

Cluster Decoded cluster 

1 Strong northerly flow from the North Sea 

2 Local north-westerly flow from North Ireland 

3 Strong southernly flow from the English Channel 

4 Very strong south-westerly flow from the Celtic Sea  

5 South-easterly flow from Belgium 

6 Very strong westerly flow from Atlantic Ocean 

7 North-easterly flow from Denmark  

 
Figure B1. Daily APO-derived biospheric CO2 concentration (in ppm) at WAO for periods 

running from the beginning of August to the end of May. The 2015/16 period is shown in green 

line, the 2019/20 in blue line and baseline mean (01/08/2011-31/07/2019 excluding the 

01/08/2015-31/07/2016 and 01/08/2013-31/07/2014 periods) is red line. The green and blue 

shadings are monthly uncertainty estimates of ffCO2[APO] at WAO for the 2015/16 and 

2019/20 periods respectively; dark red shading and light red shading are respectively 1𝜎 and 
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2𝜎 away from the monthly mean value. The data has been normalised by subtracting the 12-

month mean value from the bioCO2[APO] data (negative values indicate net CO2 uptake by 

the regional terrestrial biosphere and vice versa). 

 
Figure B2. Night-time (01-05 UTC) wind rose of each month in the December-February period 

at WAO. a, the 2011-19 period excluding the 2015/16 period; b, the 2015/16 period; c, the 

2019/20 period. 
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Figure B3. Day-time (11-15 UTC) wind rose of each month in the December-February period 

at WAO. a, the 2011-19 period excluding 2015/16 period; b, the 2015/16 period; c, the 2019/20 

period. 
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Figure B4. Scatter plot of observed and modelled bioCO2 from the trained Random 

Forest model algorithm. The plot is made using data from the model test set only, which are 

withheld from model training. The black line represents a 1:1 relationship. Observed bioCO2 

is calculated using the APO approach (see Method). The mean bias is calculated from daily 

observed‐modelled bioCO2 differences.  

  

R2 = 0.74 
Mean bias = -0.03 ± 0.09 
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7.3. Appendix C: Eliminating the anthropogenic trend associated with O2 and CO2 

measurements 

 
 

Figure C1. Use of the SLOPE function to calculate linear trend of the CO2 time series.  
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Figure C2. Calculation of the daily values for daily increment of trend.  

 

Figure C3. Calculation of the residual values (detrend data) for the time series.  
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Figure C4. Daily CO2 (in ppm) data before (top panel) and after (lower panel) eliminating 

the long term increasing trend associated with anthropogenic processes. 

 


