
 

Analyses of multi-species greenhouse gases and 

related tracers using novel measurements at 

Weybourne Atmospheric Observatory, Norfolk, UK 

 

 

By 

Leigh S. Fleming 

 

 

A thesis submitted to the School of Environmental Sciences of the 

University of East Anglia in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

 

School of Environmental Sciences 

University of East Anglia, UK 

 

 

March 2023 

 

 

 

 

© This copy of the thesis has been supplied on condition that anyone who 
consults it is understood to recognise that its copyright rests with the 
author and that use of any information derived therefrom must be in 
accordance with current UK Copyright Law. In addition, any quotation or 
extract must include full attribution. 
  



2 
 

  



3 
 

Abstract  

Carbon dioxide (CO2) is the most important greenhouse gas that influences 

anthropogenic climate change, yet a full understanding of the carbon cycle is still 

lacking. Measurement of CO2 alone provides a limited understanding of carbon cycle 

processes. Measurement of other gas species as ‘tracers’ provides additional 

information regarding carbon cycle processes. This thesis explores novel 

measurements of tracers, and novel methods for tracer applications for use in carbon 

cycle studies, using the Weybourne Atmospheric Observatory (WAO), UK, as a case 

study. 

 A ‘Picarro G2207-i' O2 analyser was tested in the laboratory and at WAO. The 

potential benefits of this analyser are reduction in calibration gas consumption and 

fewer drying requirements. The built-in water-correction procedure did not 

sufficiently correct for the influence of water vapour on the O2 mole fraction. A 

reference gas cylinder was required to reduce the influence of baseline drift. When 

measuring dry, ambient air, the G2207-i’s results showed an average difference from 

the established O2 analyser of 13.6±7.5 per meg. The overall performance was not 

quite as good as established analysers. 

Radon-222 was used to derive monthly maritime ‘background’ concentrations 

for multiple atmospheric gases. These backgrounds were compared to those 

calculated from other methods. The radon-derived backgrounds displayed good 

agreement with other methods, with some variability depending on the processes 

involved in a species’ sources and sinks. The radon method appropriately filtered air 

masses which had recent interaction with terrestrial land masses. 

Measurement of δ13C, δ18O and δ17O in CO2 using an Aerodyne TILDAS 

analyser were conducted at WAO, and used to calculate Δ17O. Two calibration 

methodologies were explored, with small differences between the results. The 

repeatability of the δ13C, δ17O and δ18O were all within the WMO goals; the Δ17O 

results were outside the goals, but in the context of ambient variability, still allow 

useful interpretation.  
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1.1 Climate change and the global carbon cycle 

Anthropogenic influence on the global climate is now a well-established fact, and is 

unequivocally the primary cause of increasing global warming (e.g., IPCC, 2021a) 

(Figure 1.1). The Earth’s global average surface temperature has increased by around 

1.1°C relative to the 1850-1900 average (Gillett et al., 2021). The impacts of this 

warming are already being observed: for example, the average ocean surface 

temperature has increased by 0.88°C between the periods 1850-1900 and 2011- 

2020, global mean sea level has risen 0.20 m over the period 1901-2018, and the 

frequency and intensity of hot climate extremes have increased on a global scale since 

1950  (IPCC, 2021a).  

 

Figure 1.1. Change in the global surface temperature (annual averages) as observed 
(black line) and simulated using ‘human and natural’ (brown line) and ‘natural only’ 
(green line) factors (Source: IPCC, 2021b). In recent decades, the natural only forcing 
cannot explain the observations. 

Greenhouse gases (GHGs) are a major contributing factor in controlling the 

global surface temperature, due to the ‘greenhouse effect’. These gases absorb 

infrared radiation emitted by the Earth within the atmosphere that would otherwise 
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be reflected back into space. Without any GHGs the Earth would be more than 30°C 

cooler and uninhabitable for life. However, increases in the abundance of GHGs in the 

atmosphere are disturbing this natural greenhouse effect through additional radiative 

forcing, and causing global temperatures to rise. Since 1950, the increase in GHG 

emissions to the atmosphere has been the dominant cause of human-induced climate 

change, with carbon dioxide (CO2) being the most important, having contributed 

approximately 80% of the effective change in radiative forcing from 1750 to 2019 

(Forster et al., 2021). The mole fraction of CO2 in the atmosphere has increased from 

approximately 277 ppm in 1750, at the start of the industrial era, to 412.4 ± 0.1 ppm 

in 2020 (Friedlingstein et al., 2020).  

The climate science community has developed a number of Shared 

Socioeconomic Pathways (SSPs) which describe potential future pathways for 

greenhouse gas emissions and socio-economic factors (O’Neill et al., 2014; Riahi et al., 

2017). Figure 1.2 shows model projections for global temperature change, global land 

precipitation change, September Arctic sea ice area, and global mean sea level change 

under a range of these different SSPs. The figure shows both the range of potential 

future outcomes depending on the pathway as well as the large degree of uncertainty 

of the future impacts of anthropogenic forcings on the climate system. The modelling 

of future impacts of a changing climate is further complicated by numerous feedback 

processes which can act to either amplify or suppress changes in the climate.  

Due to the impacts of a changing climate already experienced, and the 

modelled future impacts and feedback uncertainties, limiting future warming through 

reductions in anthropogenic GHG emissions has become a topic of major political and 

scientific discussion. A key outcome of this recognition is that 194 nations and the 

European Union (EU) have signed and ratified the Paris Agreement with the intent of 

“holding the increase in the global average temperature to well below 2°C above 

preindustrial levels and pursuing efforts to limit the temperature increase to 1.5°C 

above preindustrial levels, recognising that this would significantly reduce the risks 

and impacts of climate change” (UNFCCC, 2015, p. 2). However, the discussion of the 

relationship between GHG emissions and climate targets is set within the context of, 

and hindered by, the uncertainties which characterise the climate’s response to GHG 

emissions.  
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Figure 1.2. IPCC AR6 modelled historical and projected indicators of global climate 
change from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (O'Neill et 
al., 2016). (a) Global surface air temperature, (b) global land precipitation change, (c) 
September Arctic sea ice area, and (d) global mean sea level. The black lines show 
CMIP6 historical evolution, with uncertainty shaded in grey. The coloured lines show 
the CMIP6 model projection in each indicator for Shared Socioeconomic Pathways 
(SSP) 1-1.9, 1-2.6, 2-4.5, 3-7.0, and 5-8.5 (Lee et al., 2021). 

One of the largest uncertainties in the climate’s response to CO2 emissions can 

be attributed to a lack of full understanding of the processes involved in the carbon 

cycle, since climate projections are currently hindered by the inability to characterise 

feedbacks between a changing climate and the sources and sinks of CO2 

(Friedlingstein et al., 2014). Anthropogenic CO2 emissions occur on top of the natural 

carbon cycle (Figure 1.3) that circulates carbon between four major reservoirs: the 

atmosphere, oceans, the terrestrial biosphere, and the geosphere. The residence time 

of carbon within these reservoirs ranges from a few years for the atmosphere to 

decades or centuries for the terrestrial biosphere, soils, and the ocean. In general, the 

geosphere is not relevant in the context of anthropogenic climate change due to 

residence times in this reservoir being on the scale of millennia. 
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Figure 1.3. Simplified schematic of the global carbon cycle from Canadell et al. 
(2021). Numbers represent reservoir mass in PgC and fluxes in PgC yr-1. Yellow 
numbers and arrows represent pre-industrial (pre-1750) natural carbon reservoirs 
and fluxes. Pink numbers and arrows represent anthropogenic changes to the carbon 
reservoirs and anthropogenic fluxes averaged over the decade 2010-2019.   

Over the decade 2010-2019, 10.9 ± 0.9 PgC yr-1 were emitted from 

anthropogenic activity as CO2 into the atmosphere, including land use change. Of this 

amount, 46 % remained in the atmosphere, 23 % was taken up by the ocean, and 31 

% was stored in the terrestrial biosphere (Canadell et al., 2021). These ocean and 

land carbon sinks play a very important role in mitigating the effects of 

anthropogenic climate change; however, the future roles and sizes of these sinks are 

uncertain due to climate-carbon cycle feedback processes. Recent observations show 

that ocean carbon processes are beginning to change in response to the growing 

ocean carbon sink; in the future these changes are expected to significantly contribute 

to a weakening of the ocean sink (Canadell et al., 2021). Due to continuing ocean 

acidification there is evidence of a reduced CO2 storage capacity, and in addition, 

ocean warming and changes in circulation and biology will likely cause enhanced 

outgassing of CO2 (Gruber et al., 2023).  

The land carbon sink is largely controlled by the rates of photosynthesis and 

respiration, resulting in relatively large fluxes to and from the atmosphere, 
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respectively. Current evidence suggests that land carbon storage is presently 

increasing at a global scale (Sitch et al., 2015), with a key role being played by 

increased levels of atmospheric CO2 enhancing photosynthesis, meaning greater CO2 

uptake (referred to as the CO2 fertilisation effect) (Ainsworth and Long, 2005). 

However, there are also signs that the trend of the increasing land sink may be 

slowing down (Pen uelas et al., 2017), where the positive effects of increased 

atmospheric CO2 on carbon storage may be offset by increasing temperatures 

(Ferna ndez-Martí nez et al., 2019) and changes in precipitation patterns and water 

availability (Humphrey et al., 2018; Humphrey et al., 2021). It is clear that there are a 

large number of uncertainties associated with climate-carbon cycle feedbacks and 

that a better understanding of the carbon cycle and the processes that govern it is 

needed in order to better assess the future impacts of climate change.  

1.2 Atmospheric carbon dioxide  

CO2 in the atmosphere has been measured accurately since 1958 at the Mauna Loa 

Observatory, Hawaii (Figure 1.4; black) by the Scripps Institution of Oceanography 

(SIO), and, since the 1970s, concurrently by the National Oceanic and Atmospheric 

Administration (NOAA; not shown in the figure) . This atmospheric CO2 record, 

known as the ‘Keeling curve’, shows the long-term increasing trend due to fossil fuel 

combustion and land-use change, and the seasonal cycle caused by increased 

terrestrial photosynthesis over respiration during spring and summer, and the 

opposite during autumn and winter, in the northern hemisphere (black line). Figure 

1.4 also shows the atmospheric CO2 mole fraction time series from the South Pole, 

Antarctica (red line); as with Mauna Loa there is a long-term increase due to fossil 

fuel combustion and land use change. However, the seasonal cycle at the South Pole is 

of a much smaller magnitude than at Mauna Loa, owing to a much smaller terrestrial 

biosphere in the southern hemisphere.  

Since the first continuous CO2 record was established at Mauna Loa, a number 

of networks of monitoring sites that measure atmospheric CO2 mole fractions to a 

high degree of precision and accuracy have been established, either from in-situ 

continuous measurements or from regularly collected flask samples analysed in a 

central laboratory (e.g. Manning et al., 2011; Keeling and Graven, 2021; Heiskanen et 

al., 2022). 
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Figure 1.4. Atmospheric CO2 mole fraction measured at the Mauna Loa Observatory, 
Hawaii (black) and the South Pole, Antarctica (red) by the Scripps Institution of 
Oceanography. Monthly averaged data are shown as dots. 
(https://scrippsco2.ucsd.edu/graphics_gallery/mauna_loa_and_south_pole/mauna_lo
a_and_south_pole.html). 

These measurement networks provide reliable measures of CO2 mole fraction 

in the atmosphere. However, for atmospheric gas species such as CO2 that have 

numerous flux mechanisms, measurement of the atmospheric mole fraction alone is 

inadequate to attribute and quantify the contribution of the different sources and 

sinks to the atmospheric abundance (Weiss and Prinn, 2011; Vardag et al., 2015; 

Pickers et al., 2022).  In order to gain a profound understanding of the processes 

governing the carbon cycle and climate feedbacks, to accurately represent these 

processes in models, and to understand how sources and sinks may change under 

future climate scenarios, there is a need to distinguish the contributions to the 

atmospheric CO2 mole fraction from different sources and sinks. There are three 

types of methods used for distinguishing the influence of CO2 from different 

processes: ‘bottom-up’ inventory techniques, ‘top-down’ measurement and modelling 

studies, and those based on ‘tracer’ measurements.  

‘Bottom-up’ techniques based on inventory, economic or statistical data have 

been used in a number of applications. For example, bottom-up techniques are used 

to estimate CO2 emissions from fossil fuels based on emission factors being applied to 

statistical data, such as fuel consumption, which are scaled-up to a regional or 
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national scale (e.g., Gurney et al., 2019; Han et al., 2020); however, there are 

significant uncertainties associated with these inventories (Peylin et al., 2011). 

Inventory techniques have also been used to quantify the land carbon sink (e.g. Baker 

et al., 2004; Pan et al., 2011; Williams et al., 2014); however, these methods have 

coarse temporal resolution and can have large biases for local applications due to the 

methods used for inventory sampling (Williams et al., 2014). More recently, inventory 

methods have been used to quantify fossil fuel CO2 emissions reductions resulting 

from COVID-19 lockdowns (Le Que re  et al., 2020). 

Another commonly used method for estimating fluxes from measurements of 

CO2 mole fractions is to combine the measurements with atmospheric transport 

models, in so-called top-down inversion modelling methods (e.g. Bousquet et al., 

1999; Ro denbeck et al., 2003). Examples of uses of inversion models include 

estimation of changes in the land (e.g. Stephens et al., 2007b; Bastos et al., 2020) and 

ocean carbon sinks (Le Que re  et al., 2007). However, there are still large uncertainties 

in these methods such as estimating boundary layer height, modelled atmospheric 

transport and errors related to the resolution of the model (Tolk et al., 2008; 

Munassar et al., 2023).  

The third method for understanding the factors contributing to the measured  

atmospheric CO2 mole fraction, which will be explored in this thesis, is through the 

measurement of other atmospheric gas species, known as tracers.  

1.3 Measurement of tracers for understanding atmospheric CO2 

variations 

Since the growth of the CO2 atmospheric measurement networks, observations of 

other gas species have also seen a major expansion. Measurement of other species, 

alongside the measurements of CO2, can be used as markers for distinct processes 

such as atmospheric mixing or exchange with other reservoirs. Such species, when 

used in this manner, are referred to as ‘tracers’. Tracers are therefore a critical tool 

for the analyses of time series of CO2 in atmospheric research.  

One type of tracer method is the measurement of species which share flux 

mechanisms with CO2 during different carbon cycle processes. For example, carbon 

monoxide (CO) can be produced together with CO2 in specific ratios as a result of 

incomplete combustion depending on fuel type and combustion efficiency (Djuricin et 

al., 2010). Variations in CO, alone and in combination with other tracer species, have 
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therefore been used to identify and quantify fossil fuel CO2 (ffCO2) fluxes (e.g., 

Gamnitzer et al., 2006; Turnbull et al., 2006; Lopez et al., 2013; Young et al., 2023). 

Carbonyl sulfide (COS) is another example of a species which shares flux mechanisms 

with CO2, with the primary sink of COS being uptake by vegetation and soils; COS is 

therefore being utilised as a tracer for terrestrial CO2 uptake (e.g. Berry et al., 2013; 

Spielmann et al., 2019; Parazoo et al., 2021).   

Another tracer method is the measurement of isotopic ratios of CO2. For 

example, the radiocarbon ratio (14C/12C) of atmospheric CO2 has been used as a tracer 

for ffCO2 emissions on various scales (e.g. Turnbull et al., 2009; Djuricin et al., 2010; 

Miller et al., 2012). Due to its relatively short half-life of 5730 ± 40 years (Godwin, 

1962),  radiocarbon is absent in fossil fuels due to radioactive decay, whereas all 

other sources of CO2 contain radiocarbon mole fractions close to that of ambient air 

(Turnbull et al., 2006; Graven and Gruber, 2011); thus, the combustion of fossil fuels 

depletes the atmospheric ratio of 14C/12C (Keeling, 1979). However, measurements of 

the radiocarbon content of air are very expensive, and cannot be performed 

continuously (Gamnitzer et al., 2006), with additional issues in certain regions, such 

as the UK, owing to interference from nuclear power plant 14C emissions (Graven and 

Gruber, 2011; Vogel et al., 2013).  

As well as providing information regarding CO2 fluxes, tracers also have other 

applications in atmospheric research. One key difficulty in understanding the 

processes influencing the atmospheric CO2 mole fraction (and that of other gas 

species) is defining the ‘background’ or ‘baseline’ mole fraction. Background air is 

typically defined as air that is free of local influences, and therefore characteristic of a 

large portion of the atmosphere. Atmospheric gas species with long residence times 

in the atmosphere lead to a background mole fraction that is controlled by sources 

and sinks; any pollution events then occur on top of this background; the 

quantification of the different components of the measured mole fraction therefore 

first requires a separation of ‘background’ and ‘non-background’ signals. Some 

tracers can be used to define background air, based on their presence or absence in 

an air mass. For example, CO, NOx and black carbon have all been used as tracers to 

isolate background air masses (Tsutsumi et al., 2006; Zellweger et al., 2003; Pu et al., 

2014; Fang et al., 2015), due to being co-emitted with CO2 during combustion 

processes.  

The following sections will introduce the tracers investigated in this thesis, 

and their applications. 
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1.3.1 Atmospheric oxygen 

Oxygen (O2) is the second most abundant species in the atmosphere, after nitrogen, 

with a mole fraction of about 20.94%. The mole fraction of oxygen in the atmosphere 

varies as a result of photosynthesis, respiration, and combustion. The application of 

O2 as a tracer for carbon cycle processes is based on the fact that fluxes of CO2 and O2 

are strongly anti-correlated in some processes and not in others. The main processes 

influencing atmospheric O2 and CO2 are shown schematically in Figure 1.5. 

 

Figure 1.5. Schematic of the main processes influencing the long-term trends in 
atmospheric O2 and CO2 (Keeling and Manning, 2014). 

Fluxes of O2 and CO2 to and from the atmosphere due to terrestrial 

photosynthesis and respiration are strongly anti-correlated. This relationship can be 

represented conceptually using Eq. (1.1), 

6𝐶𝑂2 + 6𝐻2𝑂 ↔  𝐶6𝐻12𝑂6 +  6𝑂2   (1.1) 

During this process, on average, 1.1 moles of O2 are consumed for each mole of CO2 

produced, and vice versa, hence the mean global O2:CO2 oxidative ratio (OR) is 

approximately 1.1:1.0 mol mol-1 (Severinghaus, 1995). Eq. (1.1) suggests an OR of 

exactly 1, but this is a simplified version of terrestrial exchange, neglecting the 

incorporation of nutrients such as nitrates and phosphates. This OR is variable at 

different spatial and temporal scales from between 0.9 to 1.2 mol mol-1, with 

uncertainties regarding this variability (e.g. Masiello et al., 2008; Worrall et al., 2013; 

Battle et al., 2019; Faassen et al., 2023; Yan et al., 2023).  

Fluxes of CO2 and O2 arising from fossil fuel combustion are also strongly anti-

correlated (Eq. (1.2)) (Keeling and Manning, 2014).  

𝐶𝑥𝐻𝑦 + (𝑥 +
𝑦

4
)𝑂2  →  𝑥𝐶𝑂2 +  

𝑦

2
𝐻2𝑂  (1.2) 
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where CxHy represents the composition of the fuel, which could be coal, natural gas, or 

hydrocarbons. This process has a globally weighted average OR of 1.4:1.0 mol mol-1. 

This OR varies depending on fuel type: liquid fuels have an OR of 1.44 mol mol-1, solid 

fuels have a typical OR of 1.17 mol mol-1, and gases typically have an OR of 1.95 mol 

mol-1 (Keeling, 1988b; Steinbach et al., 2011).  

Fluxes of CO2 and O2 between the ocean and atmosphere are, in contrast, 

uncoupled. This results from differences in the solubility and seawater chemistry 

between CO2 and O2. When CO2 dissolves in seawater, it dissociates to form carbonate 

and bicarbonate ions; whereas, in contrast, O2 is chemically inert in seawater and not 

involved in the ocean carbonate reactions that buffer changes in atmospheric CO2. 

Atmospheric O2 has been measured from fortnightly flask samples collected at 

the Mauna Loa Observatory, Hawaii since the early 1990s by SIO (Scripps Institution 

of Oceanography). Figure 1.6 shows the O2 and CO2 time-series from Mauna Loa, 

which are anti-correlated. O2 shows a long-term decreasing trend due to fossil fuel 

combustion. The seasonal cycle in O2 is driven by exchange with the terrestrial 

biosphere and oceans, with a release of O2 into the atmosphere during the spring and 

summer, and uptake during autumn and winter.  

 

Figure 1.6. The atmospheric O2/N2 ratio and CO2 mole fraction record from flask 
samples collected at Mauna Loa Observatory, Hawaii, by the Scripps Institution of 
Oceanography  (https://scrippso2.ucsd.edu/graphics-gallery/daily-
averages/mlo.html) . Data are from analyses of fortnightly flask samples collected at 
the station.  
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Changes in atmospheric O2 are typically expressed as deviations in the O2/N2 

ratio, in per meg units (Eq. (1.3)): 

𝛿 (
𝑂2

𝑁2
) =  

𝑟𝑠𝑎𝑚𝑝𝑙𝑒−  𝑟𝑟𝑒𝑓

 𝑟𝑟𝑒𝑓
 ∙ 106   (1.3) 

where r is the O2/N2 ratio. Changes in δ(O2/N2) and CO2 can be compared using a 

factor of 4.78 per meg/ppm; in other words, 1 ppm change in CO2 is equivalent to a 

4.78 per meg change in δ(O2/N2) (Keeling et al., 1998a). Most organisations 

measuring δ(O2/N2) report data on the SIO O2 scale, where ‘zero’ per meg is 

arbitrarily defined from an air sample collected in 1988. For this reason, most 

subsequent δ(O2/N2) measurements are negative. 

Using simultaneous measurements of O2 and CO2, the atmospheric tracer 

Atmospheric Potential Oxygen (APO) was derived by Stephens et al. (1998) (Eq. 

(1.4)): 

𝐴𝑃𝑂 =  ∆𝑂2 + (1.1 × ∆𝐶𝑂2)  (1.4) 

where the factor 1.1 accounts for the previously discussed OR for terrestrial 

photosynthesis and respiration. APO is therefore, by definition, conservative with 

respect to all terrestrial biosphere processes. Changes in APO therefore mainly reflect 

changes in ocean-atmosphere exchange of O2 and CO2 (on seasonal and longer 

timescales).  Fossil fuels also have a contribution to the changes in APO, on both short 

and long timescales (Pickers et al., 2022); this is because fossil fuels have an average 

OR of 1.4 mol mol-1, which is greater than the 1.1 factor inherent in the APO definition 

(Keeling and Manning, 2014).  

Figure 1.7 shows an APO time series from flask samples collected at the Alert 

(Canada) and Cape Grim (Australia) stations from the Scripps O2 programme (Keeling 

and Graven, 2021). There is a seasonal cycle and long-term downward trend in APO 

evident at both stations. As APO is conservative with respect to the land biosphere, 

and fossil fuel combustion has only a very minor seasonal component, the seasonal 

trend in APO is caused predominantly by air-sea O2 exchange. This is reflected by the 

magnitude of the seasonal cycles, where the amplitude is slightly larger in the 

southern hemisphere due to the presence of more oceans than in the northern 

hemisphere. The long-term downward trend in APO is driven predominantly by fossil 

fuel combustion and long-term oceanic uptake of CO2 (Keeling and Manning, 2014).  
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Figure 1.7. APO flask sample measurements collected from Alert Station, Canada in 
the northern hemisphere and Cape Grim, Australia in the southern hemisphere, from 
the Scripps O2 programme (Keeling and Graven, 2021).  As for O2, APO is reported in 
per meg units.  

δ(O2/N2) measurements are now included in a few international measurement 

programmes. Such measurements of atmospheric δ(O2/N2) alongside CO2, have a 

wide number of applications as a tool for supporting carbon cycle studies.  

One major application of δ(O2/N2) measurements, is quantification of the 

global ocean and land carbon sinks (e.g. Keeling and Shertz, 1992; Battle et al., 2000; 

Manning and Keeling, 2006; Tohjima et al., 2008; Tohjima et al., 2019).  In addition, 

δ(O2/N2) measurements, and APO data derived from these, have been used to 

improve understanding of ocean processes such as: ocean heat uptake (Resplandy et 

al., 2019), ocean circulation (Nevison et al., 2020), ocean productivity and outgassing 

rates (e.g. Jin et al., 2007; Ro denbeck et al., 2008), and spatial and temporal features 

of air-sea gas exchange (e.g. Keeling et al., 1998b; Eddebbar et al., 2017).  More 

recently, APO has also been demonstrated as a novel tracer for ffCO2 (Pickers et al., 

2022).  

1.3.2 Radon-222 

 Radon-222 (222Rn) is a noble gas generated as part of the decay chain of uranium-

238 (238U) from the alpha decay of radium-226 (226Ra). As the first gaseous product in 

this decay chain, 222Rn is emitted from soil and enters the atmosphere, and thus 

originates predominantly from soil and rock. The ocean, ground-water and natural 

gas also contribute 222Rn to the atmospheric load, but these contributions are 

relatively very small (Porstendoerfer, 1994), with an oceanic source two to three 

orders of magnitude less than the terrestrial source (Zahorowski et al., 2013). As it is 

a noble gas, 222Rn does not react chemically with other species; it is also poorly 

soluble in water and does not attach to aerosols, so it is not very susceptible to wet or 
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dry atmospheric deposition removal processes (Zahorowski et al., 2004). Thus, the 

only appreciable atmospheric sink of 222Rn is radioactive decay with a half-life of 3.82 

days, therefore it does not accumulate in the atmosphere on timescales longer than a 

month. 

Of the radioactive trace elements in the atmosphere, radon has been the most 

widely researched, initially in the 1950s-1980s due to the health-risk posed from 

radon emissions in indoor air (Nazaroff, 1988). Environmental levels of radon are 

typically more than an order of magnitude lower than is typical indoors, but the 

aforementioned characteristics of radon also make it a reliable indicator of the extent 

of air mass contact with land, and thus radon observations have many applications as 

a tracer in atmospheric research.  

As radon is emitted predominantly from the soil and rocks, it is an indicator of 

recent terrestrial influences on air masses (e.g. Liu et al., 1984; Polian et al., 1986; 

Chambers et al., 2014). Radon has also been used in studies as a background selection 

technique both in conjunction with other gas species, such as CO (Brunke et al., 2004) 

and in back trajectory analysis (Chambers et al., 2013), as well as alone (e.g. 

Chambers et al., 2016; Crawford et al., 2018). Radon is also an excellent tracer for 

boundary layer mixing processes (e.g. Do rr et al., 1983; Porstendoerfer, 1994); like 

other species emitted from sources close to the ground, radon accumulates in a 

shallow nocturnal boundary layer with little vertical mixing. Therefore, if the 

exhalation rate of radon from the ground is known, the correlation in the overnight 

increase of radon and gas species of interest (e.g. CO2) can be used to estimate the flux 

of this gas; this is known as the radon tracer method (RTM; Levin et al., 1999). This 

application of radon has been used for GHG emission and sink estimates (e.g. Levin et 

al., 1999; Hammer and Levin, 2009; Vogel et al., 2012; Wada et al., 2013; Grossi et al., 

2018). However, the RTM is reliant on the accuracy of radon flux maps and is limited 

by the reliability of night-time transport modelling (Levin et al., 2021). Additionally, 

radon has been used as a tracer in studies of vertical mixing and atmospheric stability 

(e.g. Chambers et al., 2011; Williams et al., 2013; Chambers et al., 2015). 

1.3.3 Isotopologues of CO2: δ13C, δ18O, δ17O, and Δ17O 

Isotopologues are molecules that have the same chemical formula and differ only in 

their isotopic composition. Measurements of the isotopologues of CO2 can be used as 
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tracers to help shed light on carbon cycle processes. The following sections will 

describe the isotopologues of CO2 investigated in this thesis. 

1.3.3.1 δ13C  

Carbon has two stable isotopes: 12C and 13C, with approximately 99% of 

carbon on Earth present as 12C and 1% as 13C. One source of variation in the 13C/12C 

ratio of atmospheric CO2 is linked to the exchange between the terrestrial biosphere 

and the atmosphere. Photosynthesis and respiration impart distinct isotopic 

signatures to the atmosphere due to isotopic discrimination. During photosynthesis, 

terrestrial plants preferentially assimilate 12CO2 relative to 13CO2, thereby enriching 

the 13C/12C ratio of the CO2 that is left in the atmosphere (Flanagan and Ehleringer, 

1998). Respiration reverses this process, thereby increasing atmospheric CO2 and 

depleting its 13C/12C ratio. A similar effect is produced by fossil fuel combustion. fossil 

fuels are formed from ancient biological material thus they contain a lower 13C/12C 

ratio compared to the present-day atmosphere. Anthropogenic emissions of CO2 

resulting from the burning of fossil fuels therefore depletes the atmospheric 13C/12C 

ratio (Vardag et al., 2015). The net exchanges of CO2 across the air-sea interface 

leaves 13CO2 essentially unchanged (Battle et al., 2000). In terms of global carbon 

sinks, the 13C/12C ratio therefore behaves very similarly to O2 (Section 1.3.1) (Battle et 

al., 2000). 

Figure 1.8 shows 13C/12C ratio time series from flask samples collected at the 

Mauna Loa and South Pole observatories. This figure shows a long-term downward 

trend mirroring the increasing trend in the atmospheric CO2 mole fraction, seasonal 

cycles with a strong hemispheric contrast, and interannual variability associated with 

El Nin o events (Keeling and Graven, 2021). 

Variations in  the 13C/12C ratio are typically expressed in delta notation, in per 

mil units (Eq. (1.5)). 

𝛿13𝐶 =
𝑟𝑠𝑎𝑚𝑝𝑙𝑒−  𝑟𝑟𝑒𝑓

 𝑟𝑟𝑒𝑓
 ∙ 1000    (1.5) 

where r is the 13C/12C ratio. Most organisations measuring δ13C report data on 

the Vienna Pee Dee Belemnite scale (VPDB), where ‘zero’ per mil is defined from a 

Pee Dee Belemnite carbonate sample with an anomalously high 13C/12C ratio. For this 

reason, most δ13C measurements are negative.  
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Figure 1.8. Monthly-averaged data for δ13C of CO2 from flask samples collected at 
Mauna Loa, Hawaii and South Pole, Antarctica observatories by the Scripps CO2 
programme (Keeling and Graven, 2021). 

Atmospheric CO2 mole fractions are anti-correlated with the atmospheric 

13C/12C ratio; so even though variations in δ13C are typically small, they can provide 

useful information about the sources and sinks of CO2 in the atmosphere. An early 

motivation in δ13C research was resolving the global land and ocean carbon sinks (e.g. 

Keeling, 1979; Ciais et al., 1995; Battle et al., 2000). Further, measurements of δ13C 

have been widely used for source attribution of atmospheric CO2, not only between 

terrestrial and oceanic sources, but also between specific fossil fuel types based on 

the isotopic source signature (e.g. Miller et al., 2003a; Vardag et al., 2016; Newman et 

al., 2016; Wang et al., 2022; Pieber et al., 2022). This source attribution can then be 

used for verification of bottom-up emission estimate methods (e.g. Newman et al., 

2016; Wang et al., 2022). 

1.3.3.2 δ18O, δ17O and Δ17O    

Oxygen has three stable isotopes, 16O, 17O, and 18O; with the heavier isotopes 

being rarer on Earth (99.8 % for 16O, 0.2 % for 18O, and 0.04 % for 17O; Affek and 

Yakir (2014)). It is recognised that the 18O signal in CO2 reflects a unique coupling 

between the global hydrological and carbon cycles, and can provide an important 

tracer of sinks and sources of CO2, in particular, in the terrestrial biosphere (Affek and 

Yakir, 2014). 

During CO2 exchange with leaf, soil, and ocean water, the 18O isotopes of CO2 

are exchanged with those of water. Stomatal water in plant leaves is highly enriched 
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in 18O relative to soil water, due to mass-dependent fractionation during 

evapotranspiration, which imparts contrasting 18O signatures in CO2 released into the 

atmosphere after CO2-H2O exchange (e.g. Cuntz et al., 2003; Barthel et al., 2014). 

Furthermore, the equilibration and isotope exchange of CO2 with water in stomata is 

catalysed by the presence of carbon anhydrase, which extensively enriches the CO2 

released from plants with 18O from leaf-water. This isotope exchange process can 

therefore be directly related to gross primary production as first suggested by 

Farquhar et al. (1993).  

As with δ13C, variations in the 18O/16O ratio are typically expressed in delta 

notation, in per mil units, as δ18O (Eq. (1.5)). Figure 1.9 shows a δ18O time series from 

flask samples collected at the South Pole, Mauna Loa, and Barrow observatories 

(Keeling and Graven, 2021). This figure shows a seasonal cycle in δ18O that is larger in 

the northern hemisphere. In the northern hemisphere the seasonal cycle is 

dominated by terrestrial exchanges, whereas in the southern hemisphere there is a 

larger oceanic contribution (Cuntz et al., 2003). This exchange during the summer 

also leads to the northern hemispheric gradient of mean δ18O observed in Figure 1.9, 

with lower values at higher latitudes (Francey and Tans, 1987). There is little 

evidence of a long-term trend in δ18O, due to the rapid turnover of oxygen atoms with 

the water reservoirs dominating over other influences. Interannual variability 

observed in the time-series is associated with El Nin o events (Welp et al., 2011).  

 

Figure 1.9. Monthly-averaged data for δ18O of CO2 from flask samples collected at 
Barrow, Alaska, Mauna Loa, Hawaii, and the South Pole, Antarctica from the Scripps 
O2 programme (Figure adapted from Keeling and Graven, 2021). 

As the δ18O of atmospheric CO2 is controlled largely by isotopic exchange with 

water in the leaves of plants, it is an important tool to estimate global gross primary 

production (GPP; the gross CO2 uptake of plants from photosynthesis)(Francey and 

Tans, 1987). Measurements of δ18O have been widely used to estimate gross carbon 

fluxes between the atmosphere and the terrestrial biosphere (e.g. Yakir and Wang, 

1996; Ciais et al., 1997; Peylin et al., 1999; Cuntz et al., 2003). The response of δ18O to 

El Nin o events, driven by changes in tropical leaf- and soil-water δ18O associated with 
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variable tropical droughts,  has also been used to derive estimates of global GPP 

(Welp et al., 2011).  

A challenge with using δ18O to determine GPP, however, is the requirement for 

a detailed knowledge of δ18O values in numerous water reservoirs, which can be 

highly variable due to the number of processes involved in the hydrological cycle. The 

addition of 17O in CO2 measurements can remove this requirement (Hoag et al., 2005). 

As with δ18O, the 17O/16O ratio is typically expressed in delta notation as δ17O. Due to 

mass-dependent fractionation, variations in 17O are typically strongly correlated to 

variations in 18O, with any deviation from this correlation (i.e. mass independent 

fractionation) being expressed as the Δ17O signature (referred to in the literature as 

the ‘triple oxygen isotope’, ‘CO2 excess’, or ‘O2 anomaly’) (Eq. (1.6)). 

∆17𝑂 = ln(𝛿17𝑂 + 1) −  𝜆𝑅𝐿  × ln(𝛿18𝑂 + 1)  (1.6) 

which is usually expressed in per mil (‰) or per meg (0.001‰) units, 

depending on the magnitude of the Δ17O signature (Miller, 2002; Young et al., 2002); 

Very roughly, λRL is 0.5, representing the fact that the mass difference between the 

isotopes 17O and 16O is half of the mass difference between the isotopes 18O and 16O. 

The processes which affect the isotopic composition of CO2 usually depend on 

the mass of the molecules and therefore result in mass-dependent fractionation of the 

oxygen isotopes. An exception, however, is that compared to tropospheric CO2, 

stratospheric CO2 is anomalously enriched in 17O and 18O (e.g. Thiemens et al., 1991; 

La mmerzahl et al., 2002; Yeung et al., 2009). This is linked to mass-independent 

fractionation of CO2 during the formation of O3, which imparts a positive Δ17O 

signature (Yung et al., 1991). This enriched stratospheric CO2 is transported into the 

upper troposphere (Laskar et al., 2019), where it mixes and eventually comes into 

contact with water reservoirs in vegetation, soil, and oceans. When CO2 dissolves in 

liquid water, there is a mass-dependent exchange of oxygen atoms, meaning that the 

Δ17O signature of the CO2 released back into the atmosphere is reset to around 0 ‰ 

(Hoag et al., 2005). As a consequence, variations in the tropospheric Δ17O signature 

strongly depend on the magnitude of CO2 exchange with the leaf water reservoir and 

can therefore be directly related to biospheric activity (Hoag et al., 2005). However, 

unlike using δ 18O data alone, Δ17O does not directly depend on the 18O or 17O of soil 

and leaf water since hydrological cycle processes are largely mass dependent (Hoag 

et al., 2005). Δ17O should therefore be a more direct tracer for GPP than variations in 

18O/16O alone. A schematic summary of the processes affecting the Δ17O signature of 

atmospheric CO2 on a global scale is displayed in Figure 1.10. 
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Figure 1.10. Schematic summary of the processes affecting the Δ17O signature of 
atmospheric CO2 as reported by Koren et al. (2019). The CO2 mass fluxes (F), given in 
units of PgC/year, are globally integrated values averaged over 2012-2013 and 
rounded to integers. CO2 mass fluxes that increase the tropospheric CO2 mass are 
expressed as positive numbers. FAS/FSA is atmosphere (troposphere)-stratosphere 
exchange; FAL/FLA is atmosphere-leaf exchange; FASI/SIA is atmosphere-soil exchange; 
FOA is ocean-atmosphere exchange; and Fbb is flux from biomass burning. (Koren et al., 
2019). 

Measurement techniques for Δ17O in tropospheric CO2 only became 

sufficiently accurate for interpreting variations in the 2010s, providing new potential 

for insights into carbon cycle processes. Using these measurements, numerical 

models can then simulate atmospheric Δ17O of CO2 based on the representation of 

atmospheric mixing and the exchange processes of CO2 isotopologues in vegetation. A 

number of global models for Δ17O in tropospheric CO2 have been developed (Hoag et 

al., 2005; Hofmann et al., 2017; Koren et al., 2019). Koren et al. (2019) presented the 

first global 3D Δ17O model, which was used to predict the global signature, seasonal 

cycle, and vertical and latitudinal gradients. Barkan and Luz (2012) presented the 

first high-precision data on the Δ17O composition of tropospheric CO2 from a limited 

set of flask samples in Spring 2012 in Jerusalem, Israel. Additionally, Thiemens et al. 

(2014) presented a decade-long time series of Δ17O measurements from flask 

samples collected in La Jolla, California. These measurements identified a 

stratospheric component in tropospheric CO2 and discussed the role of El Nin o 

Southern Oscillation indices in tropospheric excursions. 
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1.4 Weybourne Atmospheric Observatory 

The Weybourne Atmospheric Observatory (WAO) is located on the north Norfolk 

coast of the UK  (52.95°N, 01.12°E; see Figure 1.11).The station was established in 

1992 by the University of East Anglia (UEA), and is a World Meteorological 

Organization (WMO) Global Atmosphere Watch (GAW) programme ‘Regional’ station, 

a European Union Integrated Carbon Observation System (ICOS) ‘class II’ station, and 

a UK National Centre for  Atmospheric Science Atmospheric Measurement and 

Observation Facility (NCAS/AMOF). High-precision in-situ measurements of a very 

wide range of species are carried out at the station, namely: CO2, O2, CO, CH4, H2, O3, 

N2O, NO, NO2, SF6, 222Rn, PM2.5, PM10, SO2, NH3, δ13C-CO2 and δ18O-CO2, as well as 

basic meteorological parameters. The air inlets for the gas species measurements are 

located 10 m above ground level (a.g.l) and 27 m above sea level (a.s.l), about 50 m 

from the North Sea coastline (www.weybourne.uea.ac.uk). The station is one hour’s 

drive from UEA.  

 

Figure 1.11. Map showing the location of the Weybourne Atmospheric Observatory 
(blue star), with a polar frequency plot inset showing wind speed (m s-1) and wind 
direction at WAO averaged over the period 2016-2021 . 

The array of species measured at WAO make it an ideal station for analyses of 

tracer methodologies. Additionally, WAO experiences rapidly changing wind 

directions, with multiple influences close by, and a number of rapidly changing 

sources of CO2; thus, the station is at a strategic location for experiencing a variety of 

http://www.weybourne.uea.ac.uk/
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air masses from a range of sources including relatively clean maritime air from the 

Atlantic and North Sea, and polluted continental Europe and UK air masses (Fleming 

et al., 2012).  

1.5 Thesis objective and outline 

The overarching objective of this thesis is to explore novel measurements of tracers 

and methods for tracer applications for use in carbon cycle studies, using the 

Weybourne Atmospheric Observatory as a case study and the common thread woven 

through my thesis.  

The outline of this thesis is as follows. In chapter 2, I evaluate the performance 

of a Picarro G2207-i analyser for high precision atmospheric O2 measurements, 

presenting in situ and laboratory tests of its precision and accuracy in comparison to 

an existing measurement system at WAO. Chapter 3 investigates the use of radon-222 

as a tracer for maritime background air masses at WAO and demonstrates its use 

with multiple gas species in comparison to existing background calculation 

methodologies. Chapter 4 presents a year-long time series of high-precision CO2, δ13C, 

δ17O, δ18O, and Δ17O measurements at WAO using an Aerodyne dual-laser TILDAS 

analyser; the different calibration methods and resulting time series are then 

investigated. Finally, in Chapter 5, I summarise the key findings and conclusions, and 

outline potential future research.  

References 

Adcock, K. E., Pickers, P. A., Manning, A. C., Forster, G. L., Fleming, L. S., Barningham, T., 
Wilson, P. A., Kozlova, E. A., Hewitt, M. C., Etchells, A. J. and Macdonald, A. 
(2023) '12-years of continuous atmospheric O2, CO2 and APO data from 
Weybourne Atmospheric Observatory in the United Kingdom', [In Prep]. 

Affek, H. P. and Yakir, D. (2014) '5.7 - The Stable Isotopic Composition of Atmospheric 
CO2', in Holland, H.D. & Turekian, K.K. (eds.) Treatise on Geochemistry (Second 
Edition). Oxford: Elsevier, pp. 179-212. 

Ainsworth, E. A. and Long, S. P. (2005) 'What have we learned from 15 years of free-
air CO2 enrichment (FACE)? A meta-analytic review of the responses of 
photosynthesis, canopy properties and plant production to rising CO2', New 
Phytologist, 165(2), pp. 351-372. 

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., 
Higuchi, N., Killeen, T. J. and Laurance, S. G. (2004) 'Increasing biomass in 
Amazonian forest plots', Philosophical Transactions of the Royal Society of 
London. Series B: Biological Sciences, 359(1443), pp. 353-365. 



40 
 

Barkan, E. and Luz, B. (2012) 'High-precision measurements of 17O/16O and 18O/16O 
ratios in CO2', Rapid Communications in Mass Spectrometry, 26(23), pp. 2733-
2738. 

Barthel, M., Sturm, P., Hammerle, A., Buchmann, N., Gentsch, L., Siegwolf, R. and Knohl, 
A. (2014) 'Soil H218O labelling reveals the effect of drought on C18OO fluxes to 
the atmosphere', Journal of Experimental Botany, 65(20), pp. 5783-5793. 

Bastos, A., O'Sullivan, M., Ciais, P., Makowski, D., Sitch, S., Friedlingstein, P., Chevallier, 
F., Ro denbeck, C., Pongratz, J., Luijkx, I. T., Patra, P. K., Peylin, P., Canadell, J. G., 
Lauerwald, R., Li, W., Smith, N. E., Peters, W., Goll, D. S., Jain, A. K., Kato, E., 
Lienert, S., Lombardozzi, D. L., Haverd, V., Nabel, J. E. M. S., Poulter, B., Tian, H., 
Walker, A. P. and Zaehle, S. (2020) 'Sources of Uncertainty in Regional and 
Global Terrestrial CO2 Exchange Estimates', Global Biogeochemical Cycles, 
34(2), pp. e2019GB006393. 

Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T., Conway, T. and Francey, 
R. J. (2000) 'Global carbon sinks and their variability inferred from 
atmospheric O2 and δ13C', Science, 287(5462), pp. 2467-2470. 

Battle, M. O., Munger, J. W., Conley, M., Sofen, E., Perry, R., Hart, R., Davis, Z., 
Scheckman, J., Woogerd, J., Graeter, K., Seekins, S., David, S. and Carpenter, J. 
(2019) 'Atmospheric measurements of the terrestrial O2 : CO2 exchange ratio of 
a midlatitude forest', Atmos. Chem. Phys., 19(13), pp. 8687-8701. 

Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. 
R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D. and Zhu, Z. (2013) 'A coupled 
model of the global cycles of carbonyl sulfide and CO2: A possible new window 
on the carbon cycle', Journal of Geophysical Research: Biogeosciences, 118(2), 
pp. 842-852. 

Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. and Monfray, P. (1999) 'Inverse 
modeling of annual atmospheric CO2 sources and sinks: 1. Method and control 
inversion', Journal of Geophysical Research: Atmospheres, 104(D21), pp. 26161-
26178. 

Brunke, E. G., Labuschagne, C., Parker, B., Scheel, H. E. and Whittlestone, S. (2004) 
'Baseline air mass selection at Cape Point, South Africa: application of 222Rn 
and other filter criteria to CO2', Atmospheric Environment, 38(33), pp. 5693-
5702. 

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, 
A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., 
Rogelj, J., Syampungani, S., Zaehle, S. and Zickfeld, K. (2021) 'Global Carbon and 
other Biogeochemical Cycles and Feedbacks', in Masson-Delmotte, V., Zhai, P., 
Pirani, A., Connors, S.L., Pe an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., 
Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., 
Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B. (eds.) Climate Change 2021: The 
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge, United 
Kingdom and New York, NY, USA: Cambridge University Press, pp. 673–816. 

Chambers, S., Williams, A. G., Zahorowski, W., Griffiths, A. and Crawford, J. (2011) 
'Separating remote fetch and local mixing influences on vertical radon 
measurements in the lower atmosphere', Tellus B: Chemical and Physical 
Meteorology, 63(5), pp. 843-859. 

Chambers, S. D., Hong, S. B., Williams, A. G., Crawford, J., Griffiths, A. D. and Park, S. J. 
(2014) 'Characterising terrestrial influences on Antarctic air masses using 
Radon-222 measurements at King George Island', Atmos. Chem. Phys., 14(18), 
pp. 9903-9916. 



41 
 

Chambers, S. D., Williams, A. G., Conen, F., Griffiths, A. D., Reimann, S., Steinbacher, M., 
Krummel, P. B., Steele, L. P., van der Schoot, M. V., Galbally, I. E., Molloy, S. B. 
and Barnes, J. E. (2016) 'Towards a Universal “Baseline” Characterisation of 
Air Masses for High- and Low-Altitude Observing Stations Using Radon-222', 
Aerosol and Air Quality Research, 16(3), pp. 885-899. 

Chambers, S. D., Williams, A. G., Crawford, J. and Griffiths, A. D. (2015) 'On the use of 
radon for quantifying the effects of atmospheric stability on urban emissions', 
Atmos. Chem. Phys., 15(3), pp. 1175-1190. 

Chambers, S. D., Zahorowski, W., Williams, A. G., Crawford, J. and Griffiths, A. D. (2013) 
'Identifying tropospheric baseline air masses at Mauna Loa Observatory 
between 2004 and 2010 using Radon-222 and back trajectories', Journal of 
Geophysical Research: Atmospheres, 118(2), pp. 992-1004. 

Ciais, P., Denning, A. S., Tans, P. P., Berry, J. A., Randall, D. A., Collatz, G. J., Sellers, P. J., 
White, J. W. C., Trolier, M., Meijer, H. A. J., Francey, R. J., Monfray, P. and 
Heimann, M. (1997) 'A three-dimensional synthesis study of δ18O in 
atmospheric CO2: 1. Surface fluxes', Journal of Geophysical Research: 
Atmospheres, 102(D5), pp. 5857-5872. 

Ciais, P., Tans, P. P., White, J. W. C., Trolier, M., Francey, R. J., Berry, J. A., Randall, D. R., 
Sellers, P. J., Collatz, J. G. and Schimel, D. S. (1995) 'Partitioning of ocean and 
land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate 
Monitoring and Diagnostics Laboratory Global Air Sampling Network', Journal 
of Geophysical Research: Atmospheres, 100(D3), pp. 5051-5070. 

Crawford, J., Chambers, S. D., Cohen, D. D., Williams, A. G. and Atanacio, A. (2018) 
'Baseline characterisation of source contributions to daily-integrated PM2. 5 
observations at Cape Grim using Radon-222', Environmental Pollution, 243, pp. 
37-48. 

Cuntz, M., Ciais, P., Hoffmann, G., Allison, C. E., Francey, R. J., Knorr, W., Tans, P. P., 
White, J. W. C. and Levin, I. (2003) 'A comprehensive global three-dimensional 
model of δ18O in atmospheric CO2: 2. Mapping the atmospheric signal', Journal 
of Geophysical Research: Atmospheres, 108(D17). 

Djuricin, S., Pataki, D. E. and Xu, X. M. (2010) 'A comparison of tracer methods for 
quantifying CO2 sources in an urban region', Journal of Geophysical Research-
Atmospheres, 115, pp. 13. 

Do rr, H., Kromer, B., Levin, I., Mu nnich, K. O. and Volpp, H. J. (1983) 'CO2 and radon 
222 as tracers for atmospheric transport', Journal of Geophysical Research: 
Oceans, 88(C2), pp. 1309-1313. 

Eddebbar, Y. A., Long, M. C., Resplandy, L., Ro denbeck, C., Rodgers, K. B., Manizza, M. 
and Keeling, R. F. (2017) 'Impacts of ENSO on air-sea oxygen exchange: 
Observations and mechanisms', Global Biogeochemical Cycles, 31(5), pp. 901-
921. 

Faassen, K. A. P., Nguyen, L. N. T., Broekema, E. R., Kers, B. A. M., Mammarella, I., 
Vesala, T., Pickers, P. A., Manning, A. C., Vila -Guerau de Arellano, J., Meijer, H. A. 
J., Peters, W. and Luijkx, I. T. (2023) 'Diurnal variability of atmospheric O2, CO2, 
and their exchange ratio above a boreal forest in southern Finland', Atmos. 
Chem. Phys., 23(2), pp. 851-876. 

Fang, S. X., Tans, P. P., Steinbacher, M., Zhou, L. X. and Luan, T. (2015) 'Comparison of 
the regional CO2 mole fraction filtering approaches at a WMO/GAW regional 
station in China', Atmos. Meas. Tech., 8(12), pp. 5301-5313. 

Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P., Hubick, K. T., 
Wong, S. C. and Ehleringer, J. R. (1993) 'Vegetation effects on the isotope 
composition of oxygen in atmospheric CO2', Nature, 363(6428), pp. 439-443. 



42 
 

Ferna ndez-Martí nez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., 
Canadell, J. G., Bastos, A., Friedlingstein, P., Sitch, S., Piao, S. L., Janssens, I. A. 
and Pen uelas, J. (2019) 'Global trends in carbon sinks and their relationships 
with CO2 and temperature', Nature Climate Change, 9(1), pp. 73-79. 

Flanagan, L. B. and Ehleringer, J. R. (1998) 'Ecosystem-atmosphere CO2 exchange: 
interpreting signals of change using stable isotope ratios', Trends in Ecology & 
Evolution, 13(1), pp. 10-14. 

Fleming, Z. L., Monks, P. S. and Manning, A. J. (2012) 'Review: Untangling the influence 
of air-mass history in interpreting observed atmospheric composition', 
Atmospheric Research, 104, pp. 1-39. 

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., Lunt, D. J., 
Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M. and Zhang, H. (2021) 'The 
Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity', in Masson-
Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe an, C., Berger, S., Caud, N., 
Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, 
J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B. (eds.) Climate 
Change 2021: The Physical Science Basis. Contribution of Working Group I to the 
Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge, United Kingdom and New York, NY, USA: Cambridge University 
Press, pp. 923–1054. 

Francey, R. J. and Tans, P. P. (1987) 'Latitudinal variation in oxygen-18 of atmospheric 
CO2', Nature, 327(6122), pp. 495-497. 

Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., 
Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P. and Le Que re , C. 
(2014) 'Persistent growth of CO2 emissions and implications for reaching 
climate targets', Nature Geoscience, 7(10), pp. 709-715. 

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., 
Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Que re , C., Canadell, J. G., Ciais, 
P., Jackson, R. B., Alin, S., Araga o, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., 
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., 
Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., 
Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, 
K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, 
E., Kitidis, V., Korsbakken, J. I., Landschu tzer, P., Lefe vre, N., Lenton, A., Lienert, 
S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., 
Nakaoka, S. I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., 
Resplandy, L., Robertson, E., Ro denbeck, C., Schwinger, J., Se fe rian, R., Skjelvan, 
I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van 
der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., 
Wiltshire, A. J., Yuan, W., Yue, X. and Zaehle, S. (2020) 'Global Carbon Budget 
2020', Earth Syst. Sci. Data, 12(4), pp. 3269-3340. 

Gamnitzer, U., Karstens, U., Kromer, B., Neubert, R. E. M., Meijer, H. A. J., Schroeder, H. 
and Levin, I. (2006) 'Carbon monoxide: A quantitative tracer for fossil fuel 
CO2?', Journal of Geophysical Research-Atmospheres, 111(D22), pp. 19. 

Gillett, N. P., Kirchmeier-Young, M., Ribes, A., Shiogama, H., Hegerl, G. C., Knutti, R., 
Gastineau, G., John, J. G., Li, L., Nazarenko, L., Rosenbloom, N., Seland, Ø., Wu, T., 
Yukimoto, S. and Ziehn, T. (2021) 'Constraining human contributions to 
observed warming since the pre-industrial period', Nature Climate Change, 
11(3), pp. 207-212. 

Graven, H. D. and Gruber, N. (2011) 'Continental-scale enrichment of atmospheric 
14CO2 from the nuclear power industry: potential impact on the estimation of 
fossil fuel-derived CO2', Atmos. Chem. Phys., 11(23), pp. 12339-12349. 



43 
 

Grossi, C., Vogel, F. R., Curcoll, R., A gueda, A., Vargas, A., Rodo , X. and Morguí , J. A. 
(2018) 'Study of the daily and seasonal atmospheric CH4 mixing ratio 
variability in a rural Spanish region using 222Rn tracer', Atmos. Chem. Phys., 
18(8), pp. 5847-5860. 

Gruber, N., Bakker, D. C. E., DeVries, T., Gregor, L., Hauck, J., Landschu tzer, P., 
McKinley, G. A. and Mu ller, J. D. (2023) 'Trends and variability in the ocean 
carbon sink', Nature Reviews Earth & Environment, 4(2), pp. 119-134. 

Gurney, K. R., Patarasuk, R., Liang, J., Song, Y., O'Keeffe, D., Rao, P., Whetstone, J. R., 
Duren, R. M., Eldering, A. and Miller, C. (2019) 'The Hestia fossil fuel CO2 
emissions data product for the Los Angeles megacity (Hestia-LA)', Earth Syst. 
Sci. Data, 11(3), pp. 1309-1335. 

Hammer, S. and Levin, I. (2009) 'Seasonal variation of the molecular hydrogen uptake 
by soils inferred from continuous atmospheric observations in Heidelberg, 
southwest Germany', Tellus B, 61(3), pp. 556-565. 

Han, P., Zeng, N., Oda, T., Zhang, W., Lin, X., Liu, D., Cai, Q., Ma, X., Meng, W., Wang, G., 
Wang, R. and Zheng, B. (2020) 'A city-level comparison of fossil-fuel and 
industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei 
region from eight emission inventories', Carbon Balance and Management, 
15(1), pp. 25. 

Heiskanen, J., Bru mmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., 
Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens, I. A., Jordan, A., 
Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B., Lankreijer, H., Levin, I., 
Linderson, M.-L., Loustau, D., Merbold, L., Myhre, C. L., Papale, D., Pavelka, M., 
Pilegaard, K., Ramonet, M., Rebmann, C., Rinne, J., Rivier, L., Saltikoff, E., 
Sanders, R., Steinbacher, M., Steinhoff, T., Watson, A., Vermeulen, A. T., Vesala, 
T., Ví tkova , G. and Kutsch, W. (2022) 'The Integrated Carbon Observation 
System in Europe', Bulletin of the American Meteorological Society, 103(3), pp. 
E855-E872. 

Hoag, K. J., Still, C. J., Fung, I. Y. and Boering, K. A. (2005) 'Triple oxygen isotope 
composition of tropospheric carbon dioxide as a tracer of terrestrial gross 
carbon fluxes', Geophysical Research Letters, 32(2). 

Hofmann, M. E. G., Horva th, B., Schneider, L., Peters, W., Schu tzenmeister, K. and Pack, 
A. (2017) 'Atmospheric measurements of Δ17O in CO2 in Go ttingen, Germany 
reveal a seasonal cycle driven by biospheric uptake', Geochimica et 
Cosmochimica Acta, 199, pp. 143-163. 

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I. 
and Frankenberg, C. (2021) 'Soil moisture–atmosphere feedback dominates 
land carbon uptake variability', Nature, 592(7852), pp. 65-69. 

Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S. and Seneviratne, S. I. 
(2018) 'Sensitivity of atmospheric CO2 growth rate to observed changes in 
terrestrial water storage', Nature, 560(7720), pp. 628-631. 

IPCC (2021a) Climate Change 2021: The Physical Science Basis. Contribution of 
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change. Cambridge, United Kingdom and New York, NY, USA: 
Cambridge University Press. 

IPCC (2021b) 'Summary for Policymakers', in Masson-Delmotte, V., Zhai, P., Pirani, A., 
Connors, S.L., Pe an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., 
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, 
T., Yelekçi, O., Yu, R. & Zhou, B. (eds.) Climate Change 2021: The Physical 
Science Basis. Contribution of Working Group I to the Sixth Assessment Report of 
the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom 
and New York, NY, USA: Cambridge University Press, pp. 3−32. 



44 
 

Jin, X., Najjar, R. G., Louanchi, F. and Doney, S. C. (2007) 'A modeling study of the 
seasonal oxygen budget of the global ocean', Journal of Geophysical Research: 
Oceans, 112(C5). 

Keeling, C. D. (1979) 'The Suess effect: 13Carbon-14Carbon interrelations', 
Environment International, 2(4), pp. 229-300. 

Keeling, R. F. (1988) 'Measuring correlations between atmospheric oxygen and 
carbon-dioxide mole fractions - a preliminary-study in urban air', Journal of 
Atmospheric Chemistry, 7(2), pp. 153-176. 

Keeling, R. F. and Graven, H. D. (2021) 'Insights from Time Series of Atmospheric 
Carbon Dioxide and Related Tracers', Annual Review of Environment and 
Resources, 46(1), pp. 85-110. 

Keeling, R. F. and Manning, A. C. (2014) '5.15 - Studies of Recent Changes in 
Atmospheric O2 Content', in Holland, H.D. & Turekian, K.K. (eds.) Treatise on 
Geochemistry (Second Edition). Oxford: Elsevier, pp. 385-404; doi: 
https://doi.org/10.1016/B978-0-08-095975-7.00420-4. 

Keeling, R. F., Manning, A. C., McEvoy, E. M. and Shertz, S. R. (1998a) 'Methods for 
measuring changes in atmospheric O2 concentration and their application in 
southern hemisphere air', Journal of Geophysical Research: Atmospheres, 
103(D3), pp. 3381-3397. 

Keeling, R. F. and Shertz, S. R. (1992) 'Seasonal and interannual variations in 
atmospheric oxygen and implications for the global carbon cycle', Nature, 
358(6389), pp. 723-727. 

Keeling, R. F., Stephens, B. B., Najjar, R. G., Doney, S. C., Archer, D. and Heimann, M. 
(1998b) 'Seasonal variations in the atmospheric O2/N2 ratio in relation to the 
kinetics of air-sea gas exchange', Global Biogeochemical Cycles, 12(1), pp. 141-
163. 

Koren, G., Schneider, L., van der Velde, I. R., van Schaik, E., Gromov, S. S., Adnew, G. A., 
Mrozek Martino, D. J., Hofmann, M. E. G., Liang, M.-C., Mahata, S., Bergamaschi, 
P., van der Laan-Luijkx, I. T., Krol, M. C., Ro ckmann, T. and Peters, W. (2019) 
'Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in 
Atmospheric CO2', Journal of Geophysical Research: Atmospheres, 124(15), pp. 
8808-8836. 

La mmerzahl, P., Ro ckmann, T., Brenninkmeijer, C. A. M., Krankowsky, D. and 
Mauersberger, K. (2002) 'Oxygen isotope composition of stratospheric carbon 
dioxide', Geophysical Research Letters, 29(12), pp. 23-1-23-4. 

Laskar, A. H., Mahata, S., Bhattacharya, S. K. and Liang, M.-C. (2019) 'Triple Oxygen 
and Clumped Isotope Compositions of CO2 in the Middle Troposphere', Earth 
and Space Science, 6(7), pp. 1205-1219. 

Le Que re , C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S., Andrew, R. M., 
De-Gol, A. J., Willis, D. R., Shan, Y., Canadell, J. G., Friedlingstein, P., Creutzig, F. 
and Peters, G. P. (2020) 'Temporary reduction in daily global CO2 emissions 
during the COVID-19 forced confinement', Nature Climate Change, 10(7), pp. 
647-653. 

Le Que re , C., Ro denbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., 
Labuschagne, C., Ramonet, M., Nakazawa, T., Metzl, N., Gillett, N. and Heimann, 
M. (2007) 'Saturation of the Southern Ocean CO2 Sink Due to Recent Climate 
Change', Science, 316(5832), pp. 1735-1738. 

Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., 
Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S. and Zhou, T. 
(2021) 'Future Global Climate: Scenario-Based Projections and Near-Term 
Information', in Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe an, C., 
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., 

https://doi.org/10.1016/B978-0-08-095975-7.00420-4


45 
 

Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. & 
Zhou, B. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of 
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change. Cambridge, United Kingdom and New York, NY, USA: 
Cambridge University Press, pp. 553–672. 

Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M. and Worthy, D. E. 
(1999) 'Verification of German methane emission inventories and their recent 
changes based on atmospheric observations', Journal of Geophysical Research: 
Atmospheres, 104(D3), pp. 3447-3456. 

Levin, I., Karstens, U., Hammer, S., DellaColetta, J., Maier, F. and Gachkivskyi, M. (2021) 
'Limitations of the Radon Tracer Method (RTM) to estimate regional 
Greenhouse Gases (GHG) emissions – a case study for methane in Heidelberg', 
Atmos. Chem. Phys. Discuss., 2021, pp. 1-34. 

Liu, S. C., McAfee, J. R. and Cicerone, R. J. (1984) 'Radon-222 and tropospheric vertical 
transport', Journal of Geophysical Research, 89(D5), pp. 7291-7297. 

Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., 
Mondelain, D., Perrussel, O., Ramonet, M., Xueref-Remy, I. and Bousquet, P. 
(2013) 'CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot 
study in Paris during winter 2010', Atmospheric Chemistry and Physics, 13(15), 
pp. 7343-7358. 

Manning, A. C. and Keeling, R. F. (2006) 'Global oceanic and land biotic carbon sinks 
from the Scripps atmospheric oxygen flask sampling network', Tellus B, 58(2), 
pp. 95-116. 

Manning, A. C., Nisbet, E. G., Keeling, R. F., Liss, P. S. J. P. T. o. t. R. S. A. M., Physical and 
Sciences, E. 2011. Greenhouse gases in the Earth system: setting the agenda to 
2030. The Royal Society Publishing. 

Masiello, C. A., Gallagher, M. E., Randerson, J. T., Deco, R. M. and Chadwick, O. A. (2008) 
'Evaluating two experimental approaches for measuring ecosystem carbon 
oxidation state and oxidative ratio', Journal of Geophysical Research: 
Biogeosciences, 113(G3). 

Miller, J. B., Lehman, S. J., Montzka, S. A., Sweeney, C., Miller, B. R., Karion, A., Wolak, C., 
Dlugokencky, E. J., Southon, J., Turnbull, J. C. and Tans, P. P. (2012) 'Linking 
emissions of fossil fuel CO2 and other anthropogenic trace gases using 
atmospheric 14CO', Journal of Geophysical Research: Atmospheres, 117(D8). 

Miller, J. B., Tans, P. P., White, J. W. C., Conway, T. J. and Vaughn, B. W. (2003) 'The 
atmospheric signal of terrestrial carbon isotopic discrimination and its 
implication for partitioning carbon fluxes', Tellus Series B-Chemical and 
Physical Meteorology, 55(2), pp. 197-206. 

Miller, M. F. (2002) 'Isotopic fractionation and the quantification of 17O anomalies in 
the oxygen three-isotope system: an appraisal and geochemical significance', 
Geochimica et Cosmochimica Acta, 66(11), pp. 1881-1889. 

Munassar, S., Monteil, G., Scholze, M., Karstens, U., Ro denbeck, C., Koch, F. T., Totsche, 
K. U. and Gerbig, C. (2023) 'Why do inverse models disagree? A case study with 
two European CO2 inversions', Atmos. Chem. Phys., 23(4), pp. 2813-2828. 

Nazaroff, W. W. (1988) Radon and its decay products in indoor air. United States: John 
Wiley and Sons, Incorporated. 

Nevison, C. D., Munro, D. R., Lovenduski, N. S., Keeling, R. F., Manizza, M., Morgan, E. J. 
and Ro denbeck, C. (2020) 'Southern Annular Mode Influence on Wintertime 
Ventilation of the Southern Ocean Detected in Atmospheric O2 and CO2 
Measurements', Geophysical Research Letters, 47(4), pp. e2019GL085667. 

Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., 
O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L. and Yung, Y. L. 



46 
 

(2016) 'Toward consistency between trends in bottom-up CO2 emissions and 
top-down atmospheric measurements in the Los Angeles megacity', 
Atmospheric Chemistry and Physics, 16(6), pp. 3843-3863. 

O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., 
Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K. 
and Sanderson, B. M. (2016) 'The Scenario Model Intercomparison Project 
(ScenarioMIP) for CMIP6', Geosci. Model Dev., 9(9), pp. 3461-3482. 

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R. and 
van Vuuren, D. P. (2014) 'A new scenario framework for climate change 
research: the concept of shared socioeconomic pathways', Climatic Change, 
122(3), pp. 387-400. 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., 
Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., 
McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S. and Hayes, D. (2011) 'A Large 
and Persistent Carbon Sink in the World’s Forests', Science, 333(6045), pp. 
988-993. 

Parazoo, N. C., Bowman, K. W., Baier, B. C., Liu, J., Lee, M., Kuai, L., Shiga, Y., Baker, I., 
Whelan, M. E., Feng, S., Krol, M., Sweeney, C., Runkle, B. R., Tajfar, E. and Davis, 
K. J. (2021) 'Covariation of Airborne Biogenic Tracers (CO2, COS, and CO) 
Supports Stronger Than Expected Growing Season Photosynthetic Uptake in 
the Southeastern US', Global Biogeochemical Cycles, 35(10), pp. 
e2021GB006956. 

Pen uelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Ferna ndez-Martí nez, M., Carnicer, J., 
Obersteiner, M., Piao, S., Vautard, R. and Sardans, J. (2017) 'Shifting from a 
fertilization-dominated to a warming-dominated period', Nature Ecology & 
Evolution, 1(10), pp. 1438-1445. 

Peylin, P., Ciais, P., Denning, A. S., Tans, P. P., Berry, J. A. and White, J. W. C. (1999) 'A 3-
dimensional study of δ18O in atmospheric CO2: contribution of different land 
ecosystems', Tellus B: Chemical and Physical Meteorology, 51(3), pp. 642-667. 

Peylin, P., Houweling, S., Krol, M. C., Karstens, U., Rodenbeck, C., Geels, C., Vermeulen, 
A., Badawy, B., Aulagnier, C., Pregger, T., Delage, F., Pieterse, G., Ciais, P. and 
Heimann, M. (2011) 'Importance of fossil fuel emission uncertainties over 
Europe for CO2 modeling: model intercomparison', Atmospheric Chemistry and 
Physics, 11(13), pp. 6607-6622. 

Pickers, P. A., Manning, A. C., Que re , C. L., Forster, G. L., Luijkx, I. T., Gerbig, C., Fleming, 
L. S. and Sturges, W. T. (2022) 'Novel quantification of regional fossil fuel CO2 

reductions during COVID-19 lockdowns using atmospheric oxygen 
measurements', 8(16), pp. eabl9250. 

Pieber, S. M., Tuzson, B., Henne, S., Karstens, U., Gerbig, C., Koch, F. T., Brunner, D., 
Steinbacher, M. and Emmenegger, L. (2022) 'Analysis of regional CO2 

contributions at the high Alpine observatory Jungfraujoch by means of 
atmospheric transport simulations and δ13C', Atmospheric Chemistry and 
Physics, 22(16), pp. 10721-10749. 

Polian, G., Lambert, G., Ardouin, B., Jegou, A. J. T. B. C. and Meteorology, P. (1986) 
'Long-range transport of continental radon in subantarctic and antarctic 
areas', 38(3-4), pp. 178-189. 

Porstendoerfer, J. (1994) 'Properties and behaviour of radon and thoron and their 
decay products in the air', Journal of Aerosol Science, 25(2), pp. 219-263. 

Pu, J.-J., Xu, H.-H., He, J., Fang, S.-X. and Zhou, L.-X. (2014) 'Estimation of regional 
background concentration of CO2 at Lin'an Station in Yangtze River Delta, 
China', Atmospheric Environment, 94, pp. 402-408. 



47 
 

Resplandy, L., Keeling, R. F., Eddebbar, Y., Brooks, M., Wang, R., Bopp, L., Long, M. C., 
Dunne, J. P., Koeve, W. and Oschlies, A. (2019) 'Quantification of ocean heat 
uptake from changes in atmospheric O2 and CO2 composition', Scientific 
Reports, 9(1), pp. 20244. 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, 
N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., 
Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., 
Havlik, P., Humpeno der, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, 
J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., 
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., 
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A. and 
Tavoni, M. (2017) 'The Shared Socioeconomic Pathways and their energy, land 
use, and greenhouse gas emissions implications: An overview', Global 
Environmental Change, 42, pp. 153-168. 

Ro denbeck, C., Houweling, S., Gloor, M. and Heimann, M. (2003) 'CO2  flux history 
1982–2001 inferred from atmospheric data using a global inversion of 
atmospheric transport', Atmos. Chem. Phys., 3(6), pp. 1919-1964. 

Ro denbeck, C., Le Que re , C., Heimann, M. and Keeling, R. F. (2008) 'Interannual 
variability in oceanic biogeochemical processes inferred by inversion of 
atmospheric O2/N2 and CO2 data', Tellus B, 60(5), pp. 685-705. 

Severinghaus, J. P. (1995) Studies of the terrestrial O2 and carbon cycles in sand dune 
gases and in biosphere 2. United States [Online] Available at: 
https://www.osti.gov/servlets/purl/477735 (Accessed: 04/10/2020). 

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlstro m, A., 
Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, 
M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., 
Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le 
Que re , C., Smith, B., Zhu, Z. and Myneni, R. (2015) 'Recent trends and drivers of 
regional sources and sinks of carbon dioxide', Biogeosciences, 12(3), pp. 653-
679. 

Spielmann, F. M., Wohlfahrt, G., Hammerle, A., Kitz, F., Migliavacca, M., Alberti, G., 
Ibrom, A., El-Madany, T. S., Gerdel, K., Moreno, G., Kolle, O., Karl, T., Peressotti, 
A. and Delle Vedove, G. (2019) 'Gross Primary Productivity of Four European 
Ecosystems Constrained by Joint CO2 and COS Flux Measurements', 
Geophysical Research Letters, 46(10), pp. 5284-5293. 

Steinbach, J., Gerbig, C., Rodenbeck, C., Karstens, U., Minejima, C. and Mukai, H. (2011) 
'The CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate 
(COFFEE) dataset: effects from varying oxidative ratios', Atmospheric 
Chemistry and Physics, 11(14), pp. 6855-6870. 

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, 
P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., 
Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langenfelds, 
R. L., Steele, L. P., Francey, R. J. and Denning, A. S. (2007) 'Weak Northern and 
Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric 
CO2', Science, 316(5832), pp. 1732-1735. 

Stephens, B. B., Keeling, R. F., Heimann, M., Six, K. D., Murnane, R. and Caldeira, K. 
(1998) 'Testing global ocean carbon cycle models using measurements of 
atmospheric O2 and CO2 concentration', Global Biogeochemical Cycles, 12(2), 
pp. 213-230. 

Thiemens, M. H., Chakraborty, S. and Jackson, T. L. (2014) 'Decadal Δ17O record of 
tropospheric CO2: Verification of a stratospheric component in the 

https://www.osti.gov/servlets/purl/477735


48 
 

troposphere', Journal of Geophysical Research: Atmospheres, 119(10), pp. 6221-
6229. 

Thiemens, M. H., Jackson, T., Mauersberger, K., Schueler, B. and Morton, J. (1991) 
'Oxygen isotope fractionation in stratospheric CO2', Geophysical Research 
Letters, 18(4), pp. 669-672. 

Tohjima, Y., Mukai, H., Machida, T., Hoshina, Y. and Nakaoka, S. I. (2019) 'Global 
carbon budgets estimated from atmospheric O2∕N2 and CO2 observations in the 
western Pacific region over a 15-year period', Atmos. Chem. Phys., 19(14), pp. 
9269-9285. 

Tohjima, Y., Mukai, H., Nojiri, Y., Yamagishi, H. and Machida, T. (2008) 'Atmospheric 
O2/N2 measurements at two Japanese sites: estimation of global oceanic and 
land biotic carbon sinks and analysis of the variations in atmospheric potential 
oxygen (APO)', Tellus B: Chemical and Physical Meteorology, 60(2), pp. 213-
225. 

Tolk, L. F., Meesters, A. G. C. A., Dolman, A. J. and Peters, W. (2008) 'Modelling 
representation errors of atmospheric CO2 mixing ratios at a regional scale', 
Atmos. Chem. Phys., 8(22), pp. 6587-6596. 

Tsutsumi, Y., Mori, K., Ikegami, M., Tashiro, T. and Tsuboi, K. (2006) 'Long-term trends 
of greenhouse gases in regional and background events observed during 
1998–2004 at Yonagunijima located to the east of the Asian continent', 
Atmospheric Environment, 40(30), pp. 5868-5879. 

Turnbull, J. C., Miller, J. B., Lehman, S. J., Hurst, D., Peters, W., Tans, P. P., Southon, J., 
Montzka, S. A., Elkins, J. W., Mondeel, D. J., Romashkin, P. A., Elansky, N. and 
Skorokhod, A. (2009) 'Spatial distribution of  Δ14CO2 across Eurasia: 
measurements from the TROICA-8 expedition', Atmos. Chem. Phys., 9(1), pp. 
175-187. 

Turnbull, J. C., Miller, J. B., Lehman, S. J., Tans, P. P., Sparks, R. J. and Southon, J. (2006) 
'Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 
in the atmosphere and implications for biological CO2 exchange', Geophysical 
Research Letters, 33(1). 

UNFCCC 2015. Adoption of the Paris agreement, 21st conference of the parties. 
United Nations Paris. 

Vardag, S. N., Gerbig, C., Janssens-Maenhout, G. and Levin, I. (2015) 'Estimation of 
continuous anthropogenic CO2: model-based evaluation of CO2, CO,' 
Atmospheric Chemistry and Physics, 15(22), pp. 12705-12729. 

Vardag, S. N., Hammer, S. and Levin, I. (2016) 'Evaluation of 4 years of continuous 
δ13C(CO2) data using a moving Keeling plot method', Biogeosciences, 13(14), 
pp. 4237-4251. 

Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I. and Worthy, D. E. J. 
(2012) 'Regional non-CO2 greenhouse gas fluxes inferred from atmospheric 
measurements in Ontario, Canada', Journal of Integrative Environmental 
Sciences, 9(sup1), pp. 41-55. 

Vogel, F. R., Levin, I. and Worthy, D. E. J. (2013) 'Implications for Deriving Regional 
Fossil Fuel CO2 Estimates from Atmospheric Observations in a Hot Spot of 
Nuclear Power Plant 14CO2 Emissions', Radiocarbon, 55(3), pp. 1556-1572. 

Wada, A., Matsueda, H., Murayama, S., Taguchi, S., Hirao, S., Yamazawa, H., Moriizumi, 
J., Tsuboi, K., Niwa, Y. and Sawa, Y. (2013) 'Quantification of emission 
estimates of CO2, CH4 and CO for East Asia derived from atmospheric radon-
222 measurements over the western North Pacific', Tellus B: Chemical and 
Physical Meteorology, 65(1), pp. 18037. 

Wang, P., Zhou, W., Xiong, X., Wu, S., Niu, Z., Yu, Y., Liu, J., Feng, T., Cheng, P., Du, H., Lu, 
X., Chen, N. and Hou, Y. (2022) 'Source Attribution of Atmospheric CO2 Using 



49 
 

14C and 13C as Tracers in Two Chinese Megacities During Winter', Journal of 
Geophysical Research: Atmospheres, 127(12). 

Weiss, R. F. and Prinn, R. G. (2011) 'Quantifying greenhouse-gas emissions from 
atmospheric measurements: a critical reality check for climate legislation', 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, 369(1943), pp. 1925-1942. 

Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., 
Francey, R. J., Allison, C. E. and Wahlen, M. (2011) 'Interannual variability in 
the oxygen isotopes of atmospheric CO2 driven by El Nin o', Nature, 477(7366), 
pp. 579-582. 

Williams, A. G., Chambers, S. and Griffiths, A. (2013) 'Bulk Mixing and Decoupling of 
the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous 
Natural Tracer', Boundary-Layer Meteorology, 149(3), pp. 381-402. 

Williams, C. A., Collatz, G. J., Masek, J., Huang, C. and Goward, S. N. (2014) 'Impacts of 
disturbance history on forest carbon stocks and fluxes: Merging satellite 
disturbance mapping with forest inventory data in a carbon cycle model 
framework', Remote Sensing of Environment, 151, pp. 57-71. 

Worrall, F., Clay, G. D., Masiello, C. A. and Mynheer, G. (2013) 'Estimating the oxidative 
ratio of the global terrestrial biosphere carbon', Biogeochemistry, 115(1), pp. 
23-32. 

Yakir, D. and Wang, X.-F. (1996) 'Fluxes of CO2 and water between terrestrial 
vegetation and the atmosphere estimated from isotope measurements', 
Nature, 380(6574), pp. 515-517. 

Yan, Y., Klosterhalfen, A., Moyano, F., Cuntz, M., Manning, A. C. and Knohl, A. (2023) 'A 
Modeling Approach to Investigate Drivers, Variability and Uncertainties in O2 
Fluxes and the O2:CO2 Exchange Ratios in a Temperate Forest', Biogeosciences 
Discuss., 2023, pp. 1-35. 

Yeung, L. Y., Affek, H. P., Hoag, K. J., Guo, W., Wiegel, A. A., Atlas, E. L., Schauffler, S. M., 
Okumura, M., Boering, K. A. and Eiler, J. M. (2009) 'Large and unexpected 
enrichment in stratospheric 16O13C18O and its meridional variation', 
Proceedings of the national academy of sciences, 106(28), pp. 11496-11501. 

Young, E. D., Galy, A. and Nagahara, H. (2002) 'Kinetic and equilibrium mass-
dependent isotope fractionation laws in nature and their geochemical and 
cosmochemical significance', Geochimica et Cosmochimica Acta, 66(6), pp. 
1095-1104. 

Young, H., Turnbull, J. C., Keller, E., Dominfues, L., Parry-Thompson, J., Hilton, T., 
Brailsford, G. W., Gray, S., Moss, R. and Mikaloff Fletcher, S. E. (2023) 'Urban 
flask measurements of CO2ff and CO to identify emission sources at different 
type sites in Auckland, New Zealand', Philosophical Transactions of the Royal 
Society A: Mathematical, Physical and Engineering Sciences, [Accepted]. 

Yung, Y. L., DeMore, W. B. and Pinto, J. P. (1991) 'Isotopic exchange between carbon 
dioxide and ozone via O(1D) in the stratosphere', Geophysical Research Letters, 
18(1), pp. 13-16. 

Zahorowski, W., Chambers, S. D. and Henderson-Sellers, A. (2004) 'Ground based 
radon-222 observations and their application to atmospheric studies', J 
Environ Radioact, 76(1-2), pp. 3-33. 

Zahorowski, W., Griffiths, A. D., Chambers, S. D., Williams, A. G., Law, R. M., Crawford, J. 
and Werczynski, S. (2013) 'Constraining annual and seasonal radon-222 flux 
density from the Southern Ocean using radon-222 concentrations in the 
boundary layer at Cape Grim', Tellus B: Chemical and Physical Meteorology, 
65(1), pp. 19622. 



50 
 

Zellweger, C., Forrer, J., Hofer, P., Nyeki, S., Schwarzenbach, B., Weingartner, E., 
Ammann, M. and Baltensperger, U. (2003) 'Partitioning of reactive nitrogen 
(NOy) and dependence on meteorological conditions in the lower free 
troposphere', Atmos. Chem. Phys., 3(3), pp. 779-796. 
 



51 
 

 

 

 

 

 

 

 

 

 

 

Chapter 2 Evaluating the 

performance of a ‘Picarro G2207-i' 

analyser for high-precision 

atmospheric O2 measurements 

  



52 
 

Preamble 

The work presented in this chapter was originally prepared for publication in the 

journal ‘Atmospheric Measurement Techniques’ and was published in 2023 (Fleming 

et al., 2023). With the exception of some small additions for clarification, this chapter 

is near identical to the published document. Due to this there are a number of cases 

where sentences are written in the first person plural i.e., ‘We have tested an 

atmospheric O2 analyser…’. I wrote this article, and completed the data analysis, but 

there was contribution to this article from co-authors as detailed below. 

LSF, ACM, and PAP developed the measurement methodology, which were 

conducted by LSF at UEA and WAO. AJE developed the software used to run the 

analyser. Investigation and visualisation were completed by LSF. Writing was 

completed by LSF. Review and editing were completed by LSF, ACM, PAP and GLF.  

 

Fleming, L. S., Manning, A. C., Pickers, P. A., Forster, G. L., & Etchells, A. J. (2023). 

Evaluating the performance of a Picarro G2207-i analyser for high-precision 

atmospheric O2 measurements. Atmospheric Measurement Techniques, 16(2), 387-

401.  
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Abstract 

Fluxes of oxygen (O2) and carbon dioxide (CO2) in and out of the atmosphere are 

strongly coupled for terrestrial biospheric exchange processes and fossil fuel 

combustion but are uncoupled for oceanic air-sea gas exchange. High-precision 

measurements of both species can therefore provide constraints on the carbon cycle 

and can be used to quantify fossil fuel CO2 (ffCO2) emission estimates. In the case of 

O2, however, due to its large atmospheric mole fraction (~20.9 %) it is very 

challenging to measure small variations to the degree of precision and accuracy 

required for these applications. We have tested an atmospheric O2 analyser based on 

the principle of cavity ring-down spectroscopy (Picarro Inc., model G2207-i), both in 

the laboratory and at the Weybourne Atmospheric Observatory (WAO) field station in 

the UK, in comparisons to well-established, pre-existing atmospheric O2 and CO2 

measurement systems.  

In laboratory tests analysing air in high-pressure cylinders, from the Allan 

deviation we found that the precision improved to ± 0.5 ppm (~ ± 2.4 per meg) after 

30 minute averaging and a range of hourly averaged values over 24 hours of 1.2 ppm 

(~5.8 per meg). These results are close to atmospheric O2 compatibility goals as set 

by the UN World Meteorological Organization. However, from measurements of 

ambient air conducted at WAO we found that the built-in water correction of the 

G2207-i does not sufficiently correct for the influence of water vapour on the O2 mole 

fraction. When sample air was dried and a 5-hourly baseline correction with a 

reference gas cylinder was employed, the G2207-i’s results showed an average 

difference from the established O2 analyser of 13.6 ± 7.5 per meg (over two weeks of 

continuous measurements). Over the same period, based on measurements of a so-

called ‘target tank’, analysed for 12 minutes every 7 hours, we calculated a 

repeatability of ± 5.7 ± 5.6 per meg and a compatibility of ± 10.0 ± 6.7 per meg for the 

G2207-i . To further examine the G2207-i’s performance in real-world applications 

we used ambient air measurements of O2 together with concurrent CO2 

measurements to calculate ffCO2. Due to the imprecision of the G2207-i, the ffCO2 

calculated showed large differences from that calculated from the established system, 

and had a large uncertainty of ± 13.0 ppm, which was roughly double that from the 

established system (± 5.8 ppm). 
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2.1 Introduction 

Oxygen (O2) is the most abundant molecule in the atmosphere after nitrogen (N2), 

with an atmospheric background mole fraction of approximately 20.94 % (Tohjima et 

al., 2005). Due to this large atmospheric background, O2 measurements are sensitive 

to changes in the mole fractions of other atmospheric species, such as carbon dioxide 

(CO2), due to dilution effects. O2 measurements are therefore typically reported on a 

relative scale calculated as the change in the ratio of O2 to N2 relative to a standard 

O2/N2 ratio, as given in Eq. (2.1), and expressed in ‘per meg’ units.  

δ (
O2

N2 
) = (

O2/N2 sample − O2/N2 reference

O2/N2 reference
)  ×  106    (2.1) 

In practice, atmospheric N2 is far less variable than O2 meaning that changes in 

the O2/N2 ratios can be assumed to be representative of O2 mole fraction (Keeling and 

Shertz, 1992). In comparing changes in O2 to changes in CO2, on a mole for mole basis, 

a 1 per meg change in O2 is equivalent to a 0.2094 ppm (parts per million) change in 

CO2 mole fraction (Keeling et al., 1998a). 

Over the past 3 decades, atmospheric O2 has been decreasing at a rate of ~15 

per meg per year, primarily owing to fossil fuel combustion (Keeling and Manning, 

2014); over the same period, atmospheric CO2 has been increasing at an average rate 

of 2 ppm yr-1 (Dlugokencky and Tans, 2022), also predominantly due to fossil fuel 

combustion. For most processes that cause variability in atmospheric O2, there is an 

anti-correlated change in atmospheric CO2; therefore high-precision measurements of 

atmospheric O2 play an increasingly important role in our understanding of 

atmospheric CO2, carbon cycling, and other biogeochemical processes (e.g. Pickers et 

al., 2017; Resplandy et al., 2019; Battle et al., 2019; Tohjima et al., 2019). Fluxes of O2 

and CO2 in and out of the atmosphere are strongly coupled for terrestrial biosphere 

exchange with a global average oxidative ratio (OR) in the range of 1.03 to 1.10 mol 

mol-1 (Severinghaus, 1995). For fossil fuel combustion, dependent on fuel type, the OR 

is in the range of 1.17 to 1.95 mol mol-1 (Keeling, 1988b). Whereas O2 and CO2 fluxes 

are uncoupled for oceanic air-sea gas exchange primarily due to inorganic reactions 

in the water involving the carbonate system and not O2, as well as differences in air-

sea equilibration times between the two gases.  

The relationship between O2 and CO2 fluxes has also allowed for the derivation 

of the tracer ‘atmospheric potential oxygen’ (APO), as defined in Eq. (2.2) (Stephens 

et al., 1998). 
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APO ≈  𝑂2 + (−1.1 × 𝐶𝑂2)   (2.2) 

 Where the factor -1.1 represents the mean value of the O2:CO2 OR for 

terrestrial biosphere photosynthesis and respiration (Severinghaus, 1995), and 

where we have ignored very minor influences from methane and carbon monoxide. 

APO is therefore, by definition, invariant with respect to the terrestrial biosphere. 

Changes in APO therefore mainly reflect changes in ocean-atmosphere exchange of O2 

and CO2 (primarily on seasonal and longer timescales), with a contribution from fossil 

fuels on both shorter and longer timescales. APO can thus be used to examine oceanic 

CO2 fluxes and to quantify fossil fuel CO2 (ffCO2) emissions (Pickers et al., 2022).  

The World Meteorological Organization (WMO) Global Atmospheric Watch 

(GAW) programme has established a measurement compatibility goal for O2 of ± 2 

per meg (± 0.4 ppm) (Crotwell et al., 2020), where compatibility (which can also be 

defined as measurement accuracy) refers to the acceptable level of agreement 

between two field stations or laboratories when measuring the same air sample. This 

is the scientifically desirable level of compatibility required to resolve latitudinal 

gradients and long-term trends (Crotwell et al., 2020). There is also an extended goal 

of ± 10 per meg (± 2 ppm) which is suitable for some specific applications when 

expected variation are relatively large, such as fossil fuel quantification in large cities 

(Crotwell et al., 2020). In order to meet the WMO compatibility goals, it is 

recommended that a measurement system’s repeatability should not exceed half of 

the compatibility goal (i.e., ± 1 per meg, ± 0.2 ppm). Where the repeatability refers to 

the closeness of agreements between results of measurements of the same measure 

(which is also sometimes referred to as the measurement systems precision). 

However, routinely achieving a measurement precision of ± 1 per meg, is not yet 

achievable for almost any laboratories and field stations making high-precision 

measurements of atmospheric O2. The large atmospheric background of O2 makes it 

extremely challenging to measure the relatively small variations to the level of 

repeatability required, since measuring a change of 0.2 ppm against the background 

(~209400 ppm) requires a relative precision of 0.0001 %. 

Presently, there are several different analytical techniques available for 

measuring atmospheric O2 to a high precision: interferometry (Keeling, 1988a), 

isotope ratio mass spectrometry (Bender et al., 1994), paramagnetic techniques 

(Manning et al., 1999), vacuum ultraviolet absorption (VUV) (Stephens et al., 2011), 

gas chromatography (Tohjima, 2000), and electrochemical fuel cells (Stephens et al., 

2007a). The most precise of these current methods is the VUV absorption technique 
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however, VUV O2 analysers are ‘homemade’ and are not commercially available, thus 

limiting their widespread applications. None of these techniques are ‘off-the-shelf’ 

systems, all of them are complex and time-consuming systems to design, build, and 

optimise, with very precise pressure, temperature, and flow control needed. All of the 

techniques also require frequent interruption to sample measurement to carry out 

calibration procedures (Kozlova and Manning, 2009). The supply of calibration gases 

for such systems is particularly labour intensive, due to both their relatively rapid 

consumption rate and the fact that no commercial gas supply company is able to 

provide suitable gas mixtures for atmospheric O2 research. Accurate, high-precision 

atmospheric O2 measurements therefore remain challenging. An alternative 

commercially available O2 analyser with fewer requirements for external gas 

handling, air-sample drying, and calibration procedures could consequently advance 

the field of atmospheric O2 measurements if the required performance could be 

achieved and if it were relatively easy to operate with low maintenance requirements 

and a lower rate of calibration gas consumption. 

In this paper we present the results from the analysis of a Picarro Inc. G2207-i 

oxygen analyser, which operates on the principle of cavity ring-down spectroscopy 

technology (CRDS), (hereafter referred to as the G2207-i) and evaluate its 

performance in comparison to established O2 measurement systems in the University 

of East Anglia (UEA) Carbon Related Atmospheric Measurements (CRAM) Laboratory 

and at the Weybourne Atmospheric Observatory (WAO; North Norfolk, UK). Unlike 

most other analytical techniques used for atmospheric O2 measurements, it is 

intended that the G2207-i should not require a continuous reference gas supply, and 

it has built-in pressure and flow control, and the potential for greatly reduced sample 

drying requirements due to a built-in water measurement and correction procedure. 

These features make the G2207-i a potentially desirable analyser for high-precision 

atmospheric O2 research, but we note that it would still require the same rigorous 

calibration procedures as other analysers (Kozlova and Manning, 2009), albeit 

possibly at reduced frequency. In this paper we quantify the compatibility, 

repeatability, and drift rates in the context of WMO/GAW guidelines (Crotwell et al., 

2020). In order to further examine the performance of the G2207-i in real-world 

applications, we also calculated ffCO2 from concurrent O2 and CO2 measurements 

made, using the novel methodology presented by Pickers et al. (2022). We compare 

ffCO2 calculated with O2 measurements from the G2207-i installed at WAO with ffCO2 
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calculated from the established O2 system employing a Sable Systems International 

Inc. ‘Oxzilla II’ fuel cell analyser. 

2.2 Methods 

2.2.1 Picarro G2207-i analyser 

The Picarro G2207-i O2 analyser makes absolute measurements of the mole fractions 

of the two most abundant atmospheric O2 isotopologues, 16O16O and 16O18O, through 

absorption spectra at 7882.18670 cm-1 and 7882.050155 cm-1, respectively (Berhanu 

et al., 2019). The design principles of this analyser have been described in detail by 

Berhanu et al. (2019). In our study we evaluate only what is called the ‘O2 

concentration’ mode, measuring only the 16O16O isotopologue. In the other mode, 

called the ‘δ18O plus O2 concentration’ mode, O2 mole fraction values are considerably 

less precise, as the analyser is not optimised for 16O16O measurements (primarily via 

a different set point for the pressure in the cavity). The analyser reports both ‘wet’ 

and ‘dry’ O2 mole fraction values. The ‘wet’ values (O2,NC; NC stands for ‘not 

corrected’) do not have any correction applied to them, whereas the ‘dry’ values 

(O2,WC; WC stands for ‘water corrected’) are corrected for the dilution effect of water 

vapour on the O2 mole fraction, as well as spectroscopic interference, using the 

analyser’s parallel water vapour mole fraction measurements. The G2207-i datasheet 

states a measurement precision of 5 ppm + 0.1 % of the reading (1-σ, 5 sec) for the 

water vapour mole fraction. 

2.2.2 CRAM laboratory measurement of cylinder gases 

The performance of the G2207-i was evaluated in the UEA CRAM Laboratory by 

measuring a suite of 12 gas cylinders all containing dry natural air with varying O2 

mole fractions. The cylinders were stored horizontally in a thermally insulated ‘Blue 

Box’ enclosure in order to prevent gravitational and thermal fractionation of O2 

relative to N2 (Keeling et al., 2007). Each cylinder was connected to a regulator with a 

delivery pressure of 1700 mbar and flow rate of ~95 mL min-1, the cylinders were 

switched between using a multi-position VICI Valco valve. The O2 composition of each 

of these cylinders was precisely defined on the Scripps Institution of Oceanography 

(SIO) O2 scale (Keeling et al., 2007) using a VUV O2 analyser, which is also in the 
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CRAM Laboratory. The CO2 mole fraction was defined on the ‘WMO CO2 X2007’ scale 

(Zhao and Tans, 2006) using a Siemens Corp. Ultramat model 6F non-dispersive 

infrared (NDIR) CO2 analyser. Five of these cylinders were working secondary 

standards (WSSes) which were used to calibrate the G2207-i, one was a reference 

tank (RT; explained below in section 2.2.3.2), while the other six were treated as 

cylinders with unknown mole fractions (Table 2.1). The six ‘unknown’ cylinders were 

used to evaluate the performance of the analyser with a CO2 mole fraction range of 

375 to 443 ppm and an O2/N2 ratio range of -915 to +435 per meg, a much larger 

range than would typically be observed in ambient air. 

The cylinders were run consecutively, starting with the six ‘unknowns’ and 

ending with the five WSSes, with the RT run at the beginning and end; this sequence 

was repeated twice. Each of the gas cylinders was flushed for 20 minutes prior to 

running on the G2207-i to allow for removal of stagnant air and equilibration of the 

pressure regulators; air from each cylinder was then passed through the analyser for 

20 minutes, with the first 8 minutes of data discarded to allow flushing of the 

previous cylinder’s air from the cavity, and to maintain consistency with the flushing 

time employed in subsequent WAO tests (section 2.2.3.2). The remaining 12 minutes 

for each cylinder was then averaged to give the ‘raw’ O2,NC value for each cylinder as 

measured on the G2207-i. 

Table 2.1. Declared O2/N2 ratios and CO2 mole fractions with ± 1σ standard 
deviations of the five WSSes, RT, and six ‘unknown’ cylinder gases used in the CRAM 
Laboratory tests of the G2207-i. 

Cylinder 
number 

Cylinder 
ID 

Declared O2 (per 
meg)a 

Declared CO2 
(ppm)b 

WSS1 D089507 -565.5 ±1.3 428.741 ±0.018 
WSS2 D801299 -486.1 ±3.0 381.230 ±0.016 
WSS3 D073409 -658.4 ±2.2 398.875 ±0.018 
WSS4 D073419 -926.4 ±5.9 440.355 ±0.072 
WSS5 D073418 -782.7 ±5.6 413.662 ±0.057 

RT CC78691 -414.3 ±0.8 384.915 ±0.005 
1 D273555 -914.8 ±0.7 443.384 ±0.013 
2 D399093 -880.5 ±0.9 415.246 ±0.003 
3 ND29112 -582.0 ±1.0 399.976 ±0.004 
4 ND29110 -375.0 ±1.3 381.544 ±0.004 
5 D273559c 411.7 ±2.1 375.122 ±0.007 
6 D801298c 434.6 ±0.3 412.934 ±0.002 

a Values declared with a VUV O2 analyser in the CRAM Laboratory traceable to the SIO O2 scale 
b Values declared with a Siemens Ultramat 6F NDIR CO2 analyser in the CRAM Laboratory 
traceable to the WMO CO2 X2007 scale 
c The O2 values of these cylinders is far outside the range observed in ambient air, thus are 
less relevant to the applications of atmospheric observations but have been included in this 
analysis for completeness of examining the analysers performance. 
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The G2207-i has a linear response to O2 mole fraction (Eq. (2.3)) 

𝑦 = 𝐵𝑥 + 𝐶    (2.3)  

where, B and C are the coefficients derived from the slope and intercept of the 

linear regression calculated from the measurement of the WSSes. Therefore, a 

minimum of two WSS cylinders are required to determine the B and C coefficients, 

but by using five we are able to calculate the coefficient of determination (R2), as well 

as providing more robustness in the fit. The calibration equation was used to convert 

the ‘raw’ O2,NC values taken from the G2207-i (x in Eq. (2.3)) into what we call ‘ppm 

equivalent’ (ppmEquiv) O2 units (y in Eq. (2.3)), as described in Kozlova and Manning 

(2009). A linear interpolation between the RT at the beginning and end of each run 

was used as a baseline for the run and subtracted from all other cylinder 

measurements to correct for short-term instrumental variations. The calibration 

curve (Eq. (2.3)) for the G2207-i was also determined relative to the interpolated RT 

values (WSS - RT); thus, all the unknown cylinder measurements could be converted 

into ppmEquiv. The ppmEquiv O2 units were then converted to per meg units, 

providing a δ(O2/N2) value for each ‘unknown cylinder, using Eq. (2.4). 

𝛿 (
𝑂2

𝑁2
) =  

𝛿𝑂2 +(𝐶𝑂2−363.29) × 𝑆𝑂2

𝑆𝑂2 ×(1− 𝑆𝑂2)
   (2.4)  

where, δO2 is the calibrated G2207-i O2,NC value in ppmEquiv units, CO2 is the 

declared cylinder CO2 mole fraction from the Siemens analyser in ppm, SO2 is 0.2094 

which is the standard mole fraction of O2 molecules in dry air, and 363.29 is an 

arbitrary CO2 reference value in ppm, inherent to the SIO O2 scale (Stephens et al., 

2007a). 

2.2.3 Weybourne Atmospheric Observatory field tests 

Weybourne Atmospheric Observatory (WAO) is located on the north Norfolk 

coast, UK (52°57’02’’N, 1°07’19’’E), approximately 35 km north-northwest of 

Norwich, 170 km northeast of London and 200 km east of Birmingham. It is part of 

the European Union’s Integrated Carbon Observation System (ICOS) and the World 

Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) programme. 

High-precision, high-accuracy, continuous measurements of a wide array of 

atmospheric gas species (including greenhouse gases, isotopes, reactive gases) are 
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carried out at a fine temporal scale, funded in part through the UK’s National Centre 

for Atmospheric Science (NCAS) long-term measurement programme. 

Atmospheric O2 and CO2 have been measured continuously at WAO since 2008 

(Wilson, 2013). CO2 is measured with an Ultramat 6E NDIR analyser (Siemens Corp.) 

and O2 is measured with a ‘Oxzilla II’ dual fuel cell O2 analyser (Sable Systems 

International Inc.) (hereafter referred to as the ‘Oxzilla’). The Oxzilla is a differential 

analyser which uses two lead fuel cell sensors consisting of a lead anode in an acidic 

electrolyte solution. O2 from the air passes through a gas-permeable membrane in the 

cells and undergoes electrochemical reduction. This reaction then generates a current 

that is directly proportional to the partial pressure of O2 at the cell sensing surface.  

The analysers are arranged in series, with the air sample first passing through the 

Ultramat 6E and then the Oxzilla, with rigorous gas handling and calibration 

protocols followed (as in Stephens et al., 2007a). 

The G2207-i was installed at WAO from 23 October 2019 – 02 November 

2019, sampling from a solar shield aspirated air inlet (AAI) at a height of 10 m above 

ground level (a.g.l.; 20 m above sea level, a.s.l.). The AAI protects the inlet from solar 

radiation and generates a continuous air flow over the inlet, thus preventing the 

differential fractionation of O2 molecules relative to N2 molecules due to ambient 

temperature variations (Blaine et al., 2006) and relatively slow inlet flow rates 

(Manning, 2001). A full plumbing diagram of the gas-handling set-up for the G2207-i 

at WAO is displayed in Figure 2.1. 

 

Figure 2.1. Gas handling diagram of the Picarro G2207-i installed at WAO. (AAI, 
aspirated air inlet; WSS, working secondary standard; RT, reference tank; TT, target 
tank). Calibration gases were shared with the established O2 and CO2 system (using 
V4), but the established system has its own AAI, pump, drying system, and pressure 
and flow control (not depicted here). 
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2.2.3.1 Drying 

Water vapour mole fractions in the troposphere vary from a few parts per 

million to a few percent over small temporal and spatial scales. This water vapour has 

a diluting effect on atmospheric gas measurement. A 1 ppm increase of water vapour 

will dilute the measured atmospheric O2 by approximately 1.3 per meg (Stephens et 

al., 2007a); thus, the existing method for high-precision atmospheric O2 

measurements is to dry the sample air to less than 1 ppm water vapour content 

before measurement. All calibration and RT gases are also dried to less than 1 ppm 

water vapour. Furthermore, measurements using spectroscopy techniques are also 

sensitive to water vapour variability due to changes in the degree of pressure 

broadening of the spectroscopic lines used to measure the O2 and δ18O2. Water 

vapour correction has previously been successfully implemented for measurements 

of CO2 and methane (CH4) with CRDS analysers (Chen et al., 2010); however, in order 

to achieve accuracies within the WMO goal of 1% H2O, custom coefficients must be 

obtained for each analyser (Rella et al., 2013). 

As discussed in section 2.1, O2 measurements are reported by the G2207-i as 

‘wet’ (O2,NC) and, after the implementation of water correction, ‘dry’ (O2,WC). In order 

to evaluate the effectiveness of the built-in water correction procedure for 

compensating for water vapour dilution, ambient air was sampled with three 

different drying regimes: no drying, partial drying, and full drying. Under the full 

drying conditions (which is the current standard practice), the sample air passed 

through a fridge trap (~1°C) and a cryogenic chiller trap (~-90°C), removing water 

vapour to < 1 ppm. Under partial drying the chiller was bypassed, so the sample air 

only passed through the fridge trap, which dries the air to approximately 5000 ppm 

of water vapour. With no drying, both the chiller and fridge were bypassed. Air was 

simultaneously sampled through a separate AAI (10 m a.g.l.) into the pre-existing O2 

and CO2 system with full drying during each of these stages. The time difference 

between air travelling from the AAIs to each of the two analysers was accounted for. 

This was done by running ambient air through the G2207-i and Oxzilla systems and 

comparing the high-frequency data with differing time-shifts when there was a lot of 

variability in the O2 measurements. We found that no correction was needed for the 

response time between the two systems. 

To evaluate the built-in water correction procedure of the G2207-i the O2,WC 

values were compared with measurements from the Oxzilla (which was continuously 
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sampling fully dried air) for the no drying and partial drying periods, and the O2,NC 

and O2,WC G2207-i values were compared to the Oxzilla when sampling fully dried air. 

2.2.3.2 Calibration procedure 

A tailor-made calibration protocol was developed for the G2207-i following 

ICOS atmospheric station specifications (ICOS-RI, 2020). The calibration cylinders 

were stored horizontally in a thermally insulated ‘Blue Box’ enclosure in order to 

prevent gravitational and thermal fractionation of O2 and N2. The calibration gases 

consisted of three WSSes with precisely defined O2 and CO2 values which span the 

unpolluted atmospheric range (traceable to the SIO O2 and WMO CO2 X2007 scales) 

and a reference tank (RT) with O2 and CO2 values close to ambient air conditions at 

the site. The repeatability and compatibility of the analyser were evaluated using a 

target tank (TT) (sometimes known as a ‘surveillance tank’) with precisely defined O2 

and CO2 values. With full drying of the sample air each of the WSSes, the RT, and the 

TT were run for 20 minutes, the first 8 minutes was discarded due to the sweep-out 

time of the G2207-i, equilibration after valve switching, and surface effects, and the 

final 12 minutes averaged to determine the cylinder value for the given run. A 

flushing period of 8 minutes and averaging time of 12 minutes were chosen to match 

that of the established system. Under partial and no drying, the run-time of the 

cylinders was increased in order to fully flush the G2207-i of water vapour; each 

cylinder was therefore run for 32 minutes, with the first 20 minutes being discarded 

and the final 12 minutes averaged.  

A full 3-gas WSS calibration of the G2207-i was run every 23 hours, this 

frequency is intentionally not a multiple of 24 hours in order to prevent aliasing the 

data by calibrating under environmental conditions that may occur at the same time 

each day. This calibration corrects for drift in the span or non-linearity of the 

analyser. As in the CRAM laboratory tests (see section 2.2.2), the WSSes were used to 

define a calibration equation to convert the raw analyser O2 values into ppmEquiv O2 

units. Eq. (2.3) and the concurrent CO2 measurement from the Ultramat 6E NDIR 

were then used to convert this into per meg units. 

The RT is used for data correction caused by short-term instrument drift and 

was run every 5 hours. A linear interpolation between each of the RT run averages 

was treated as a baseline and subtracted from all subsequent air and cylinder 

measurements. The calibration curve for the G2207-i was also determined relative to 
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the RT values (WSS- RT) , thus the air measurement differences can be easily 

converted into per meg units.  

Finally, the TT was run every 7 hours, this cylinder is used to quantify the 

repeatability and compatibility of the analyser. ‘Repeatability’ is defined as the 

closeness of agreement between results of successive measurements of the same 

measure carried out under the same measurement conditions and is considered as a 

proxy for the precision of a measurement system. ‘Compatibility’ is defined as the 

averaged O2 value of all TT runs over time, compared to the values declared by the 

VUV, and provides a measure of the compatibility to the SIO scale over time (Kozlova 

and Manning, 2009). The TT air does not pass through the AAI or drying lines (Figure 

2.1) so it is therefore mainly representative of the analyser’s repeatability and 

compatibility only.  

2.2.4 Quantifying fossil fuel CO2 using atmospheric potential oxygen 

In order to further assess the G2207-i’s performance in real-world 

applications the hourly-averaged O2,NC observations from the full drying regime 

period at WAO were used to isolate the fossil fuel component of the concurrent CO2 

observations and then compared to the ffCO2 values calculated from atmospheric 

potential oxygen (APO) derived from the hourly-averaged Oxzilla O2 observations 

following the methodology outlined in Pickers et al. (2022). 

The tracer APO, derived by Stephens et al. (1998), was first calculated using 

Eq. (2.5) (using both G2207-i O2,NC and Oxzilla O2 values); these APO values were then 

used to calculate ffCO2 using Eq. (2.6). 

𝐴𝑃𝑂 = [𝑂2] + ((
−1.1

0.2094
) × (350 − [𝐶𝑂2]))    (2.5) 

where O2 and CO2 are in per meg and ppm units, respectively; -1.1 is the global 

average O2:CO2 terrestrial biosphere-atmosphere exchange rate (Severinghaus, 

1995), 0.2094 is the mole fraction of O2 molecules in dry air (Tohjima et al., 2005), 

and 350 is an arbitrary reference value for CO2 in ppm. Multiplying CO2 by -1.1 and 

dividing by 0.2094 converts the CO2 data from ppm to per meg units.  

𝑓𝑓𝐶𝑂2 =  
𝐴𝑃𝑂− 𝐴𝑃𝑂𝑏𝑔

𝑅𝐴𝑃𝑂:𝐶𝑂2

    (2.6) 

Where APO is derived from Eq. (5) in per meg units, APObg is the APO 

background, or baseline, value determined using a statistical baseline fitting 

procedure, and RAPO:CO2 is the APO:CO2 combustion ratio for fossil fuel emissions. The 
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APObg values were determined using the rfbaseline function from the IDPmisc 

package in R, which implements robust fitting of local regression models, with a 

smoothing window of 1 week (Ruckstuhl et al., 2012). The APO:CO2 emission ratio 

(RAPO:CO2) used is -0.3 mol mol-1, an approximate mean value for WAO as determined 

from the COFFEE inventory (a typical value for fossil fuel emissions, given that the 

APO:CO2 ratio = O2:CO2 + 1.1) (Pickers, 2016; Steinbach et al., 2011). The uncertainty 

on the ffCO2 mole fractions was calculated using Eq. (2.6) with the upper and lower 

uncertainty limit for each variable (where the measurement uncertainty for APO was 

calculated by summing in quadrature the CO2 and O2 measurement uncertainty for 

each analyser), then taking the standard deviation (SD) of the resultant ffCO2 value of 

each combination for each hourly time stamp. 

2.3 Results and discussion 

2.3.1 Precision and drift 

To assess the short-term precision and optimal averaging time of the G2207-i 

the Allan deviation technique (Werle et al., 1993) was used whilst sampling a 

compressed-air cylinder in the laboratory (50 L, 200 bar). The cylinder was run for 

24 hours with a sample flow rate of 94 mL min-1 and cavity pressure and temperature 

of 340 mbar and 45°C, respectively. The results of this Allan deviation analysis are in 

agreement with those obtained by Berhanu et al. (2019), where a precision of 1 ppm 

(~4.8 per meg) was achieved after an averaging time of 300 seconds. Precision then 

continues to improve until around a 30 minute averaging time where a precision of 

~0.5 ppm (~2.4 per meg) is reached, and remains around that value for averaging 

times up to around 1 hour (Figure 2.2). It should be noted that unlike the hourly 

average and standard deviation obtained from measurement of cylinder air, the 

hourly averaged atmospheric data also contain natural variability in addition to 

analyser related noise and drift.  
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Figure 2.2. Allan deviation plot displaying the precision of the G2207-i O2 mole 
fraction measured from an ambient compressed-air cylinder. The Allan deviation was 
calculated using the ‘avarn’ function from the ‘allanvar’ R package.  

To evaluate the analyser drift (i.e., the changing sensitivity of the analysers 

response with time), O2,NC values from the G2207-i were averaged to 1 hour (Figure 

2.3b; reported in ppm where 1 ppm corresponds to a change of 4.8 per meg in the 

O2/N2 ratio). The G2207-i datasheet states a maximum drift at STP (standard 

temperature and pressure) (over 24 hours, peak-to-peak, 1-hour internal average at 

21 % O2) of <6 ppm. We found that over 24 hours, the range of the hourly averages is 

~1.2 ppm (approximately 5.8 per meg); this is better than stated by Picarro Inc. but 

does not meet the WMO compatibility goal of ± 2 per meg, as the internal drift of the 

analyser is greater than this goal. The standard deviation of each of these hourly 

averages is ~14.5 ppm (~69.6 per meg) (Figure 2.3a), this is caused by the large 

amount of analyser noise in the raw 1 second data points, spanning ~100 ppm (~480 

per meg) (Figure 2.3c). The overall drift over the 24 hours of raw data however is 

very small, shown by a linear regression slope of -4.26 x 10-6 ppm s-1 (Figure 2.3c). 
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Figure 2.3. O2,NC mole fractions from the G2207-i sampling dry compressed cylinder 
air over 24 hours (reported in ppm, where 1 ppm corresponds to a change of 4.8 per 
meg in the O2/N2 ratio). (a) Standard deviation of the hourly averaged values. (b) 
Hourly averaged O2,NC, with error bars representing standard deviation. (c) Raw 1 
second O2,NC values, the red line depicts the linear regression line, with the equation 
and R2 value written above. 

2.3.2 CRAM laboratory measurement of cylinder gases 

The G2207-i analyser performance was evaluated by measuring six gas 

cylinders with precisely defined O2 and CO2 values as measured on a VUV O2 analyser 

and Siemens Ultramat 6F NDIR CO2 analyser (Table 2.1). The difference between the 

O2,NC values (per meg) as measured by the G2207-i and the declared values from the 

VUV are shown in Table 2.2, for runs both with and without the RT interpolation 

applied. This procedure was carried out twice, referred to as ‘Run 1’ and ‘Run 2’ in 

Table 2.2. 

For both sets of runs without the application of the RT interpolation the 

difference between the VUV declared value and that measured by the G2207-i is very 

large and far outside of an acceptable range (Table 2.2), with an average difference 

from the declared values for all cylinders of 22.0 ± 10.3 per meg. For all cylinders, 

except for cylinder 5 and 6, a large improvement in the difference is seen after the 
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application of the RT correction. Due to the large differences between the declared 

and measured values without the RT correction applied, only the results with the RT 

correction will be discussed hereafter.  

Table 2.2. The difference between the O2 value of each cylinder as measured on the 
G2207-i and the VUV analyser (G2207-i - VUV), for two runs on the G2207-i with and 
without RT correction applied. 

 
 

 
 
 

Cyl 
no. 

 
 

 
Decla

red O2 
(per 

meg) 

Without RT correction With RT correction 

Run 1 
difference 

from 
declared 

(per 
meg)a 

Run 2 
difference 

from 
declared 

(per 
meg)a 

Mean of 
absolute 

difference 
of both 

runs (per 
meg)b 

Run 1 
difference 

from 
declared 

(per 
meg)a 

Run 2 
difference 

from 
declared 

(per 
meg)a 

Mean of 
absolute 

difference
s of both 

runs (per 
meg)b 

1 -914.8 
±0.7 

9.9±8.4 21.4±8.2 15.7± 8.1 0.4±8.5 2.4±8.1 1.4±1.4 

2 -880.5 
±0.9 

13.7±8.7 26.5±8.3 20.1±9.1 6.1±8.4 7.6±8.2 6.9±1.1 

3 -582.0 
±1.0 

8.1±8.5 22.4±11.3 15.3±10.1 0.7± 8.0 3.1±11.2 1.9±1.7 

4 -375.0 
±1.3 

12.4±11.6 18.4±9.5 15.4±4.2 5.8±11.3 -1.1±9.5 3.5±3.3 

5 411.7 
±2.1 

44.0±12.6 -3.6±11.5 23.8±28.6 19.0±12.4 -40.1±10.2 29.6±14.9 

6 434.6 
±0.3 

44.6±5.4 -39.1±10.2 41.9±3.9 22.2±5.1 -49.8±11.5 36.0±19.5 

a ±1σ standard deviation of the 12-minute G2207-i average. 
b ±1σ standard deviation of the average of the run 1 and run 2 G2207-i – VUV absolute 
differences. 

 
Cylinders 5 and 6 contain O2 values far higher than that found in ambient air 

(411.7 and 432.6 and per meg, respectively) and outside of the range spanned by the 

WSSes used for calibration. For these two cylinders, the difference between the 

declared value and that measured by the G2207-i is far larger than the other cylinders 

and also more variable between the two runs with a standard deviation of the 

absolute values between the two runs of ± 14.9 and ± 19.5 per meg, respectively 

(Table 2.2). Berhanu et al. (2019) found that the accuracy of the G2207-i was reduced 

when the CO2 mixing ratio was much higher than that of ambient air but did not 

observe the same reduction in accuracy with high O2 mixing ratios. Ignoring the two 

cylinders with positive O2, the average absolute difference between the remaining 4 

unknown cylinders and the declared values over the two runs is 3.4 ± 2.5 per meg, 

this is slightly greater than the WMO compatibility goal of ± 2 per meg but does fall 

within the extended goal of ± 10 per meg and is similar to what can be achieved with 

an Oxzilla II (Pickers et al., 2017). There is also no correlation between the accuracy 
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and the declared O2 value excluding the two cylinders with positive O2 (R2 = 0.07 for 

run 1, R2 = 0.53 for run 2). 

Although the accuracy of the O2 values measured by the G2207-i for these 

cylinders is variable, particularly for the cylinders with high O2, the standard 

deviation of the 2-minute data points used to calculate the final cylinder O2 value as 

defined by the G2207-i within each run is more consistent. However, the 

repeatability, used as a proxy for precision, and defined here as the ± 1σ standard 

deviation of the average of the two measurements of each cylinder are variable. For 

the two cylinders with high O2 (cylinders 5 and 6) the repeatability is more than 5 

times greater than the WMO extended repeatability goal of ± 5 per meg. For the 

remaining four cylinder the repeatability is far lower, with cylinder 1 and cylinder 3 

both falling within the extended repeatability goal. 

2.3.3 Weybourne Atmospheric Observatory field tests 

2.3.3.1 Partial and no drying of ambient air measurements 

The results from no drying and partial drying of the sample air into the G2207-

i at WAO are displayed in Figure 2.4 and Figure 2.5, respectively. The O2 mole 

fractions reported in ppm units by the G2207-i were converted to per meg units using 

the calibration equations produced through the measurement of the three WSS 

cylinders every 23 hours, and the concurrent CO2 observations from the Ultramat 6E 

analyser.  
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Figure 2.4. With no drying of the sample air through the G2207-i (a) Hourly averaged 
water vapour, (b) G2207-i – Oxzilla difference for O2,NC (dark blue) and O2,WC (light 
blue), and (c) Oxzilla O2 with no drying of the sample air through the G2207-i. Note 
the reversed water vapour axis and different axis scales for O2,NC and O2,WC. 

During the period where there was no drying of the G2207-i air sample there 

is a significant difference between the O2 values reported by the Oxzilla (dried air) 

and the G2207-i O2,NC values (Figure 2.4b), this is to be expected due to the diluting 

effect of water vapour; however, there is also a significant difference between the 

Oxzilla O2 and the G2207-i O2,WC values. Over the entire no drying period the average 

difference between the Oxzilla observations and the G2207-i O2,NC is -9654.4 ± 272.8 

per meg. The average difference between the Oxzilla and the G2207-i O2,WC values is -

849.8 ± 31.1 per meg. Although the difference is substantially smaller with the 

application of the G2207-i built-in water correction procedure, it is still unusably 

large, with no similarity in the Oxzilla and G2207-i signals and both the O2,NC and O2,WC 

G2207-i values correlating with the H2O variability (Figure 2.6a and b). This 

demonstrates that the algorithm currently applied for water correction is unsuitable 

for precise O2 measurement. 
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Figure 2.5. With partial drying of the sample air through the G2207-i (a) Hourly 
averaged Water vapour (top), (b) G2207-i – Oxzilla difference for O2,NC (dark blue) 
and O2,WC (light blue), and (c) Oxzilla O2 (bottom) with partial drying of the sample air 
through the G2207-i (Oxzilla sample air is fully dried). Note the reversed water 
vapour axis, and different axis scales for O2,NC and O2,WC. The spike in water vapour on 
12 November 2019 is due to a temporary increase in the temperature of the fridge.  

As seen during the no-drying period of the sample air, there is also a 

significant difference between the reported O2 values of the Oxzilla and G2207-i 

under the partial drying regime for both O2,NC and O2,WC (Figure 2.5). With partial 

drying, the time-series of the difference between the O2 values of the two analysers is 

a lot smoother than with no drying, this is due to the fridge trap removing some of the 

natural variability in the water vapour mole fraction. Over the entire partial drying 

period the average difference between the Oxzilla observations and the G2207-i O2,NC 

is -7144.1 ± 258.6 per meg. The average difference between the Oxzilla and the 

G2207-i O2,WC values is -612.7 ± 31.8 per meg. There is a large improvement with the 

application of the water correction procedure; however, as with the no-drying results, 

the difference in O2 values between the Oxzilla and G2207-i O2,WC are too large to be 

usable for any application, with the O2,NC and O2,WC values correlating with the H2O 

variability (Figure 2.6c and d). 



71 
 

 

Figure 2.6. Correlation between water vapour mole fraction and hourly averaged 
G2207-i O2 for (a) no drying O2,NC, (b) no drying O2,WC, (c) partial drying O2,NC, and (d) 
partial drying O2,WC. Red lines show linear regression.  

Under both partial drying and no-drying regimes, the difference between the 

Oxzilla and G2207-i values is strongly correlated with the water vapour mole fraction 

but decreases with the application of the built-in water correction procedure (Figure 

2.6). The R2 value decreases from 0.996 to 0.803 for no drying and from 0.967 to 

0.301 for partial drying once the water correction has been applied. Given the 

correlation between the water vapour mole fraction and the O2,WC reported by the 

G2207-i these values are not usable without significant improvements to the water 

correction procedure by Picarro Inc.. 

Due to the large differences observed between the Oxzilla and G2207-i 

reported O2 values under no drying and partial drying, no further investigation was 

undertaken, thus only the fully dried sample air is considered hereafter. 

2.3.3.2 Full drying of ambient air measurements 

The results from fully drying the sample air between 24 October 2019 and 7 

November 2019 are displayed in Figure 2.7. The O2 mole fractions reported in ppm 
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units by the G2207-i were converted to per meg units using the calibration equations 

produced through the measurement of the three WSS cylinders every 23 hours, and 

the concurrent CO2 observations. 

 

Figure 2.7. Time series with full drying of the air sample. (a) Hourly averaged water 
vapour, spikes are due to equilibration after valve switching from cylinder air to 
sample air. (b) G2207-i – Oxzilla difference for O2,WC (light blue), O2,NC (dark blue), and 
O2,NC without the RT interpolation applied (grey); vertical dashed lines indicated a full 
3-gas WSS calibration on the G2207-i, and the red horizontal line indicates zero 
difference from the Oxzilla. (c) Hourly averaged Oxzilla O2 (red), O2,WC (light blue) and 
O2,NC (dark blue). Note, there was no WSS calibration on 27 October 2019 due to a 
macro error which prevented valve switching to calibration gases, therefore the 
calibration from 26 October 2019 was applied for 46 hours. 

There is a greater difference between the Oxzilla and G2207-i O2,WC values 

than the O2,NC values, with an average difference over the entire full drying period of 

22.6 ± 7.4 per meg compared to 13.6 ± 7.5 per meg, respectively. This may be due to 

overcorrection of the O2,NC values as the water vapour mole fraction is below the 

G2207-i’s lower detection limit and precision i.e. the G2207-i is reporting H2O mole 

fractions of approximately 7 ppm (Figure 2.7a) (with frequent spikes due to 

equilibration after switching of V1 (Figure 2.1) from cylinder to sample air); however, 

when the air sample is fully dried by passing through the chiller and fridge trap, the 

water vapour is reduced to below 1 ppm. This overestimated water correction whilst 

sampling fully dried air was also found by Berhanu et al. (2019). We therefore only 

refer to the O2,NC values, which we believe to be more accurate, in the analysis from 

now onwards. 
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The large jumps in the G2207-i O2,NC values following WSS calibrations (see 

Figure 2.7b, grey points) are caused by a drift in the instruments baseline, which only 

becomes applied to the data after each calibration step is applied. These jumps were 

reduced through the application of the 5-hour RT interpolation procedure (see Figure 

2.7b, blue points) which constrained the baseline drift (refer to section 2.2.3.2). After 

the application of the RT interpolation the jumps between WSS calibrations were 

vastly reduced (see Figure 2.7). 

2.3.3.3 Repeatability and compatibility 

The repeatability and compatibility of the analyser were evaluated through the 

running of a TT every 7 hours during the full drying period using O2,NC values, the 

results of which are presented in Figure 2.8 and Table 2.3. For O2 the WMO 

repeatability goal is ± 1 per meg (with an extended goal of ± 5 per meg) and the 

compatibility goal is ± 2 per meg (with an extended goal of ± 10 per meg; indicated by 

the dashed lines in Figure 2.8; (Crotwell et al., 2020)).  

 

Figure 2.8. TT differences from declared values (measured - declared) (± 1σ 
standard deviation) for the Oxzilla (red) and G2207-i O2,NC (blue) . The solid line 
indicates zero difference from the declared O2 value of the TT, and the dashed lines 
indicate the WMO compatibility goal of ± 2 per meg and the extended goal of ± 10 per 
meg. 

The repeatability is determined from the mean ± 1σ standard deviations of the 

average of two consecutive measurements of the TT. For the G2207-i this is equal to ± 

5.7 ± 5.6 per meg, compared to ± 2.2 ± 2.0 per meg on the Oxzilla. Prior to applying 

the RT interpolation to the G2207-i data, the repeatability of the G2207-i was ± 11.9 ± 
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13.8 per meg, twice as bad as after the RT application; this is because after the RT 

interpolation was applied the large jumps in the TT value after a WSS calibration 

were removed. In the context of the WMO repeatability goals, neither the Oxzilla nor 

the G2207-i meet the goal of ± 1 per meg. For O2, the WMO the goals are very 

ambitious and not currently achievable by the O2 measurement community; hence, 

the ‘extended’ O2 repeatability goal of ± 5 per meg (Crotwell et al., 2020). The Oxzilla 

TT results lie within this extended goal, however the G2207-i does not, even after the 

application of the RT. 

Table 2.3. Repeatability and compatibility goals and achievements for each analyser. 

 Repeatability 
(per meg)a 

Compatibility (per 
meg)b 

WMO compatibility goal ± 1 (± 5)c ± 2 (± 10)c 

Oxzilla ± 2.21 ± 1.96 ± 3.03 ± 2.59 
G2207-i O2,NC without RT interpolation  ± 11.86 ± 13.83 ± 22.88 ± 34.11 

G2207-i O2,NC ± 5.69 ± 5.61 ± 9.97 ± 6.71 
a Values are calculated using the method in Kozlova and Manning (2009) and Pickers et al. 
(2017). Mean ± 1σ standard deviations of the average of two consecutive measurements of 
the TT, determined from 30 TT measurements for the Oxzilla and 37 TT measurements for 
the G2207-i, where one run is the average of 12 minutes of data. Uncertainties are given on 
these mean standard deviations, illustrating that the analytical repeatability is variable over 
time. 
b Mean differences between the measured TT O2/N2 ratio, and the declared values determined 
on the VUV analyser against primary calibration standards on the SIO O2 scale. 
c WMO repeatability and compatibility goals, where the repeatability of a measurement 
should be at most half of the value of the compatibility goal. For O2, the WMO the goals are 
very ambitious and not currently achievable by the O2 measurement community; hence the 
‘extended’ O2 goals, which are suitable for some O2 applications, shown in parenthesis. 

 

The compatibility of the analyser, which is here used as a proxy for accuracy, is 

determined by calculating the mean difference between the TT O2 as measured by the 

G2207-i and the VUV declared value (-718 per meg). The mean absolute difference 

from the declared value on the VUV for the Oxzilla is 3.0 ± 2.6 per meg, this is well 

within the extended WMO compatibility goal of ± 10 per meg and is quite close to 

more stringent goal of ± 2 per meg. The compatibility of the G2207-i prior to the 

application of the RT is 22.9 ± 34.1 per meg, which is far greater than even the 

extended compatibility goal of ± 10 per meg. After the application of the RT 

interpolation the compatibility of the G2207-i O2,NC was calculated as 10.0 ± 6.71 per 

meg, although this is not within the WMO compatibility goal, it is just within the 

extended goal, which is deemed suitable for some applications in specific 

circumstances, such as where the signals are very large as such that reduced 
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repeatability and compatibility does not preclude useful information from the 

measurements. 

The compatibility and repeatability of the G2207-i measurements were vastly 

improved after the application of a 5-hourly RT, however if one ignores the TT results 

immediately after a new WSS calibration (i.e., after the large jumps when the RT was 

not applied), the repeatability without the RT interpolation is 5.2 ± 4.5 per meg, 

improving to 4.3 ± 4.6 per meg when the RT is applied. This is because the RT 

corrected for baseline drift between WSS calibrations, but it does not correct for drift 

within the calibration period. However, as the TT results are imprecise (as illustrated 

by the large error bars in Figure 2.8), even if any baseline drift within a calibration 

period were corrected for there would likely be little improvement in the final TT 

results as the noise in the RT-corrected TT values is primarily caused by imprecision 

rather than baseline drift. 

2.3.4 Applications of the G2207-i O2 measurements in the calculation of 

fossil fuel CO2  

In order to further assess the G2207-i’s performance in real-world 

applications the fully dried, RT corrected, O2,NC observations from WAO were used to 

isolate the fossil fuel component of the concurrent CO2 observations and then 

compared to the ffCO2 values calculated from the Oxzilla O2 observations following 

the APO methodology outlined in Pickers et al. (2022). The resultant ffCO2 values 

calculated from each analyser are displayed in Figure 2.9. 

The measurement uncertainty was calculated as the average hourly SD on 30 

October 2019, this date was chosen as it was a particularly stable period with little 

variation in the TT results for both analysers (Figure 2.8); the resultant uncertainty 

for the G2207-i is ± 11.2 per meg compared to ± 4.9 per meg for the Oxzilla. The 

uncertainty in the baseline (± 28 %), and the emission ratio uncertainty (± 22 %) are 

significantly larger than these measurement uncertainties (Pickers et al., 2022), but 

as these are the same for both analysers the additional measurement uncertainty for 

the G2207-i caused by analyser noise increases the uncertainty of the calculated ffCO2 

values. The average final calculated uncertainty on the ffCO2 values calculated from 

the Oxzilla measurements is 5.8 ppm, compared to 13.0 ppm on the G2207-i . 

The average ffCO2 value over the entire full drying period for the Oxzilla is 5.1 

ppm, compared to 7.9 ppm on the G2207-i  (Table 2.4); the calculated ffCO2 from the 



76 
 

G2207-i is higher than that of the Oxzilla 73 % of the time. This difference is 

predominantly due to the higher O2 values reported by the G2207-i as discussed in 

section 2.3.3.2; some of this difference also comes from the jumps in the G2207-i O2 

values which mean that the calculated baselines used for each analyser follow 

different trends. For example, on the 27 October 2019 and 30 October 2019 the 

largest difference between the calculated ffCO2 values is observed (Figure 2.9), on 

both of these dates there is a large jump in O2 values from the previous day measured 

by the G2207-i following a WSS calibration (Figure 2.7). Although the O2 difference 

between the two analysers on these days are low, there was a large difference the 

preceding day. Days with the larger differences (due to a higher O2 value reported by 

the G2207-i) in observed values pull the baseline to become more positive, thus 

making the difference between the ffCO2 calculated from the two analysers larger on 

days where the actual observed O2 difference is smaller.  

 

Figure 2.9. (a) Difference between the ffCO2 calculated using the G2207-i and the 
Oxzilla O2 (G2207-i – Oxzilla). (b) Calculated ffCO2 from the G2207-i (red) and the 
Oxzilla (blue), blue and red shaded areas indicate uncertainty of the calculated ffCO2.  
Dashed black lines indicates 0 ppm. Negative ffCO2 values occur when O2 
observations are above (more negative) the calculated O2 baseline. Note the gaps are 
due to threshold requirement of a minimum of 20 minutes of data for hourly 
averages.  

Although the G2207-i calculated ffCO2 values are often higher than those from 

the Oxzilla, it still follows the same trend (with some jumps in the G2207-i values); 

however, the maximum and minimum values occur at different times. The differences 
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in ffCO2 calculated from the G2207-i and the Oxzilla will become problematic if using 

the G2207-i analyser for top-down ffCO2 quantification on an hourly basis.  

Table 2.4. Comparison of ffCO2 values calculated from the Oxzilla and G2207-i O2 
measurements. Average values given ±1σ standard deviation. 

 Oxzilla ffCO2 
(ppm) 

G2207-i ffCO2 (ppm) 

Average  5.1 ± 5.9 7.9 ± 6.6 
Maximum  25.2 29.4 
Minimum  -3.7 -6.5 

2.4 Conclusions 

The performance of the Picarro G2207-i under both laboratory and field 

conditions has been thoroughly evaluated. When running a cylinder on the G2207-i 

over 24 hours in the laboratory, we observed a large amount of noise in the raw 1 

second data, resulting in a large standard deviation in averaged data. This standard 

deviation is reduced over longer averaging times. During the laboratory 

measurement of cylinder gases with declared O2 values, the G2207-i performed 

within the WMO extended compatibility goal of ± 10 per meg when measuring 

cylinders with a negative O2 per meg value. When measuring cylinders with a positive 

O2 value, the precision and accuracy of the result worsened, thus the G2207-i is not 

recommended for use in this range.  

When sampling ambient air, we found that the G2207-i‘s built-in water 

correction does not, at present, sufficiently correct for the influence of water vapour 

even when the sample air is partially dried, and we therefore recommend full drying 

(<1 ppm H2O) of air samples. When sampling fully dried air, large step-changes in the 

reported O2 values from the G2207-i were observed after each WSS calibration; the 

addition of a RT every 5-hours vastly reduced these jumps however they were still 

observable. When the RT routine was applied the repeatability of the G2207-i was ± 

5.7 ± 5.6 per meg, falling just outside of the WMO extended goal of ± 5 per meg, it is 

possible that with a more frequent RT routine this repeatability will improve. The 

compatibility was ± 10.0 ± 6.7 per meg, falling within the WMO extended 

compatibility goal for O2 of ± 10 per meg. In the future, investigation into whether 

increasing the frequency of the running of a RT to reduce jumps in the observed O2 

values after a WSS calibration may improve both the repeatability and compatibility 

of the analyser. A key benefit of CRDS analysers is that they do not, in principle, 
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require drying of the air sample. However, this is not currently the case with the 

G2207-i for O2 measurements. 
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3.1 Introduction 

The atmospheric mole fraction and lifetime of a gas species is the result of a complex 

combination of emissions from sources and losses to sinks, and characteristics of the 

atmospheric volume into which they mix, on a local, regional, and global scale. To 

interpret the time series of atmospheric gas measurements and to understand the 

processes that affect them, it is necessary to separate and quantify the contribution 

from each of the sources and sinks to the measured mole fractions. However, this is a 

complicated task. For gases that have multiple sources and sinks, measurements of 

the atmospheric mole fractions alone are inadequate to precisely differentiate the 

contribution of these different sources and sinks to the total atmospheric abundance 

(Weiss and Prinn, 2011; Vardag et al., 2015; Pickers et al., 2022). The ability to 

predict the impact of gases in the atmosphere on climate depends critically on this 

ability to accurately represent these key processes in a range of models. The 

understanding of which processes are involved is also of vital importance to predict 

how sources and sinks may change under future climate scenarios.  

Gas species with long lifetimes reside in the atmosphere leading to a 

‘background’ mole fraction that is dictated by sources and sinks; new pollution events 

then occur on top of this background. The quantification of the different components 

of the measured mole fraction therefore first requires a separation of ‘background’ 

and ‘non-background’ signals (‘background’ is sometimes also referred to as 

‘baseline’). The combination of above-background pollution events with inverse 

modelling and atmospheric transport and chemistry models can then be used to map 

and quantify emissions and provide further understanding of the processes 

contributing to global atmospheric mole fractions. The background mole fraction of 

an atmospheric species can be defined as ‘the concentration [mole fraction] of a gas 

species in a pristine air mass in which atmospheric impurities of a relatively short 

lifetime are not present’ (IUPAC, 1997). For example, well-mixed air masses that 

contain constituent gas species at mole fractions considered representative of 

regional or hemispheric background value due to having little influence from 

localised sources of the constituent species. In order to identify an atmospheric 

background, it is therefore necessary to remove continental and local anthropogenic 

effects, which can cause either increases or decreases in the background mole 

fraction (Brunke et al., 2004).  
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To accurately assess long-term natural and anthropogenic emissions 

influences and short-term pollution events on the atmosphere, it is first necessary to 

identify these background atmospheric conditions. The comparison of time series 

from different sampling sites also requires the separation of well-mixed background 

air masses from those that have been subject to recent pollution events from localised 

sources. However, the determination of background conditions is subjective as there 

is no standardised methodology for determining backgrounds within the scientific 

atmospheric community. A consistent definition of background conditions across 

WMO GAW (World Meteorological Organization Global Atmosphere Watch) stations 

has historically been problematic as they represent a mixture of contrasting settings. 

Very few monitoring stations are remote enough to be permanently exposed to 

pristine air masses, and many GAW stations are frequently affected by local sources 

or sinks, meaning that all stations do not provide the same opportunities for 

observing air masses that have been minimally perturbed by terrestrial contact on 

diurnal, synoptic, or seasonal timescales (Chambers et al., 2016). Ultimately, the 

choice of method for determining the background in different studies is dependent on 

the local conditions at the given measurements station and the scientific question 

being asked.  

In recent years, several methods have been used to estimate the background 

composition for a range of atmospheric gas species. These methods, in brief, are as 

follows: criteria based on meteorological conditions using either measured 

meteorology from the station being investigated (e.g. Brailsford et al., 2012), 

evaluation of the air mass origin using back trajectory analysis (e.g. Cui et al., 2011), 

or by using a Lagrangian particle atmospheric dispersion model (e.g. Manning et al., 

2021); criteria based on statistical methods, including curve fitting (e.g. Ruckstuhl et 

al., 2012; Apadula et al., 2019); and criteria based on chemical parameters, such as 

trace gas mole fractions or the ratio of trace gases (e.g. Tsutsumi et al., 2006; Pu et al., 

2014). Many studies use a combination of two or more of the aforementioned 

methods in order to identify the background mole fractions (e.g. Brailsford et al., 

2012; Pu et al., 2014).   

For remote coastal locations, the ‘background’ can also be referred to as the 

‘clean maritime air sector’, for which wind direction can often be a good proxy to 

define a sector that has been subject to limited terrestrial contact. However, this is 

often complicated by local circulation that can impact upon this ‘clean air sector’. 
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Furthermore, wind direction alone is not necessarily a robust indicator of air mass 

history as the wind direction measured at a given location is not always 

representative of the larger scale synoptic flow due to local circulation e.g., sea breeze 

effects (Fleming et al., 2012). Air masses arriving from the ‘clean maritime air sector’ 

could have also mixed with polluted air before arriving at the measurement station 

(Fleming et al., 2012). This approach is therefore frequently used in conjunction with 

filtering of the time series in order to identify stable periods of air, that are 

representative of the ‘clean maritime air sector’ (Schuepbach et al., 2001; e.g. 

Brailsford et al., 2012; Chambers et al., 2016). 

Air mass back trajectories offer a more reliable method for estimating 

background conditions than use of the wind direction alone, as they provide 

information about the long-range air-mass history before arrival at the measurement 

point; however, their accuracy is affected by the resolution of the meteorological data 

used. Back trajectory models follow the path of a single parcel of air backwards 

through time from the receptor site. Back trajectories are used to determine a 

background by partitioning the trajectories into different source regions, and 

rejecting data that originates or passes over the defined ‘non-background’ regions 

(e.g. Balzani Lo o v et al., 2008; Cui et al., 2011). Trajectory analysis also has its 

limitations: the meteorological reanalysis data are not immediately available so they 

cannot be used to operate conditional samplers which can be set to sample when 

specified criterion are met, e.g. when air is arriving from the clean air sector. 

Additionally, the resolution is generally not better than a few hours, and, most 

importantly, even though the trajectory may indicate that an air mass may have 

passed over land it may not have mixed with polluted air close to the surface  (Gras 

and Whittlestone, 1992). In the boundary layer, the analysis of a single back 

trajectory is also not sufficient to fully describe the transport of an air mass due to 

turbulent mixing processes; these processes can be captured by the addition of 

dispersion modelling (Stohl, 1998). 

 Atmospheric Particle Dispersion Models (e.g., NAME (Jones et al., 2007)) can 

be used to better understand the history of the air mass being sampled through the 

simulated release of a large number of particles backwards in time from the receptor 

site to produce a ‘footprint’ of the air mass history, thus providing an improvement to 

back trajectory models which only follow a single parcel of air. Using this method, 

background composition is estimated using measurements in air masses that have 



   
 

85 
 

not been influenced by significant local sources or sinks (e.g. Ebinghaus et al., 2011; 

Manning et al., 2021). However, particle dispersion models are also limited by the 

frequency of runs (usually every few hours), the resolution of the meteorological data 

used as an input, and the delay in the availability of the input data meaning it cannot 

be computed in real-time.  

Purely statistical methodologies have also been used for the estimation of 

background composition. This approach commonly relies on a comparison of the 

standard deviation of the mole fraction data and the identification of measurements 

that deviate significantly from a smooth curve fit to the data; Thoning et al. (1989) 

presented an early statistical method for determining the carbon dioxide (CO2) 

background at Mauna Loa Observatory, and is the basis for many other statistical 

background methods. Examples of other statistical methods developed include: 

robust extraction of baseline signal (REBS) (Ruckstuhl et al., 2012), background data 

selection (BaDS) (Apadula et al., 2019; Trisolino et al., 2021), HPspline (Keeling et al., 

1989), coefficient of variation (COV) (Hagler et al., 2010; Brantley et al., 2014), 

standard deviation method (Drewnick et al., 2012) and anomaly detection algorithm 

(ADA) (Resovsky et al., 2021). Statistical filters are particularly appropriate for trace 

gases such as CO2, methane (CH4), and carbon monoxide (CO), where the key 

indicator of non-background influence is variability that is primarily caused by 

different sources and variable transport patterns (Brunke et al., 2004). A benefit of 

using statistical methods is that they do not have to be adapted to the conditions at an 

individual measurement station, so can be quicker and easier to implement, meaning 

they can be performed in near real-time, and they allow for easier comparison of 

multiple stations across large spatial scales.  However, as these methods are based 

purely on the input dataset, with no additional information, the produced background 

estimation can be easily skewed by any inconsistencies or large gaps in the dataset.  

Finally, the presence of concurrently measured atmospheric constituents, or 

ratios to other atmospheric constituents have been used as ‘tracers’ to select for 

background air masses. For example, CO (e.g. Parrish et al., 1991; Tsutsumi et al., 

2006), NOy (e.g. Zellweger et al., 2003; Zanis et al., 2007), and black carbon (Pu et al., 

2014; Fang et al., 2015). Tracers offer an objective, real-time criterion for background 

selection provided that they can be measured in parallel and provide a strong 

indication that the air being sampled has not been influenced recently by passage 

over land or a pollution source.  
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One such tracer with the ability to act as a proxy for recent influence from land 

surface contact is atmospheric radon-222 (222Rn). Radon-222 is a noble gas generated 

as part of the decay chain of uranium-238 (238U) from the alpha decay of radium-226 

(226Ra). As the first gaseous product in this decay chain, 222Rn is emitted from soil and 

enters the atmosphere, and thus originates predominantly from soil and rock. The 

ocean, ground-water and natural gas also contribute 222Rn to the atmospheric load, 

but these contributions are relatively very small (Porstendoerfer, 1994), with an 

oceanic source two to three orders of magnitude less than the terrestrial source 

(Zahorowski et al., 2013). As it is a noble gas, 222Rn does not react chemically with 

other species. It is also poorly soluble in water and does not attach to aerosols, so is 

not highly susceptible to wet or dry atmospheric deposition removal processes 

(Zahorowski et al., 2004). Thus, the only atmospheric sink of 222Rn is radioactive 

decay with a half-life of approximately 3.82 days. Therefore, it does not accumulate in 

the atmosphere on timescales longer than a month. This half-life is also comparable 

to that of other short-lived atmospheric pollutants (e.g. NOx, CO, O3), and to the 

timescale of many important aspects of atmospheric dynamics, making radon a useful 

tracer at local, regional, and global scales (Zahorowski et al., 2004). As 222Rn 

emissions are predominantly land based, in situ atmospheric 222Rn measurements can 

act as a powerful tracer to identify background air masses that have had limited 

recent interaction with terrestrial sources and sinks. 

Unlike other background estimation methods, 222Rn is based on continuous 

observations, and therefore does not rely on complex meteorological or statistical 

models that can introduce further uncertainties and require large amounts of 

computer processing power. 222Rn has been widely used as an indicator of recent 

terrestrial influences in air masses (e.g. Liu et al., 1984; Polian et al., 1986; Chambers 

et al., 2014), and of vertical mixing and atmospheric stability (e.g. Chambers et al., 

2011; Williams et al., 2013; Chambers et al., 2015). Radon has also been used in 

studies as a background selection technique both in conjunction with other gas 

species, such as CO (Brunke et al., 2004) and in back trajectory analysis (Chambers et 

al., 2013), as well as alone (e.g. Chambers et al., 2016; Crawford et al., 2018). All of 

these studies using 222Rn alone as a background selection methodology were either 

conducted at southern hemisphere or at high-altitude monitoring stations.  

Despite the importance of defining the background for scientific 

understanding and interpretation of atmospheric gas species measurements, there is 
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no internationally agreed method to calculate, or even define it. In different contexts, 

the background is defined to mean different things. In this chapter, I evaluate the 

potential of 222Rn as a proxy for regional maritime air masses and use these air 

masses to define a Regional Maritime Background (RMB) for several gas species 

routinely measured at the Weybourne Atmospheric Observatory (WAO; a northern 

hemisphere coastal station) and compare the resultant RMBs to those calculated 

using other methodologies. The six species that will be used to investigate the use of 

222Rn for calculating RMB values are CO2, oxygen (O2), hydrogen (H2), CH4, CO, and 

nitrous oxide (N2O).  These 222Rn derived RMBs are then compared to backgrounds 

produced using a statistical method, a particle dispersion model, a back trajectory 

analysis, and meteorological and standard deviation (SD) filtering.  

3.1.1 Aims 

(i) Use the 3-year 222Rn in situ time series at WAO to calculate monthly 

regional maritime backgrounds of 6 gas species: CO2, O2, H2, CH4, CO, and 

N2O. 

(ii) Quantitively compare the 222Rn method presented here to a range of other 

methods used to calculate atmospheric backgrounds to assess the 

robustness and compatibility compared to other methods. 

3.2 Weybourne Atmospheric Observatory and datasets 

The Weybourne Atmospheric Observatory (WAO) is located on the north Norfolk 

coast, UK (52°57’02’’N, 1°07’19’’E), approximately 35 km north-northwest of the city 

of Norwich, 170 km northeast of London and 200 km east of Birmingham. WAO 

experiences rapidly changing wind direction and is thus at a strategic location for 

sampling a variety of air masses including relatively clean ocean air from the North 

Atlantic Ocean and North Sea, as well as polluted European and UK air masses 

(Fleming et al., 2012). WAO is part of the European Union’s Integrated Carbon 

Observation System (ICOS) as an approved ‘Class 2’ station and is also a member of 

the World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) 

programme. High-precision, high-accuracy, continuous measurements of a wide array 

of atmospheric gas species (including greenhouse gases, isotopes, and reactive gases) 
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are carried out at fine temporal scales. For a full station description, refer to Chapter 

1.  

3.2.1 Radon data 

Radon has been measured at the WAO since March 2018 using an ANSTO (Australian 

Nuclear Science and Technology) 1500 L dual-flow-loop two-filter atmospheric radon 

detector (Whittlestone and Zahorowski, 1998; Chambers et al., 2011). Unlike proxy 

techniques that use radon progeny measurements, the dual-flow-loop two-filter 

radon detectors provide a direct measurement of ambient radon activity. Air is drawn 

from a height of 10 m a.g.l. at approximately 85 L min-1 through an inlet system and a 

delay volume to allow for thoron (220Rn) decay (T1/2 = 56 s). This then passes 

through a filter to remove all ambient aerosols, as well as 222Rn and 220Rn progeny. 

This filtered air then passes into the main delay volume (1500 L) where new radon 

progeny form and the alpha-decays are counted on a second filter. The only source of 

progeny on the second filter is from the radioactive decay of 222Rn in the delay 

chamber, thus the alpha-decay (α) count rate is proportional to the ambient 222Rn 

activity concentration. Atmospheric 222Rn activity concentrations are then 

determined from the α count rate and air flow rate into the delay volume with a data 

point produced every 30-minutes. Air flows continuously through the analyser with a 

response time of 45 minutes due to the large delay volume. For a full description of 

the detector operating principles see Whittlestone and Zahorowski (1998) and 

Griffiths et al. (2016).  

Calibration of the detector is performed monthly (which is corrected for in 

post-processing; see Griffiths et al. (2016)) by the injection of radon from a well-

characterised 226Ra source (Pylon Electronics Inc.), with a source activity of 50 

kilobecquerel (kBq) at a flow rate of approximately 80 mL min-1. The detector’s signal 

is affected by a slow build-up of lead-210 (210Pb; t1/2 = 22.3 yr) on the second filter, 

therefore instrumental baseline drift checks are performed approximately every 

three months, from which a linear model of 210Pb accumulation on the second filter is 

derived and removed from the raw α counts. The net counts are then calibrated to 

atmospheric radon activity concentration (Schmithu sen et al., 2017). The accurate 

identification and removal of the detector’s baseline drift is particularly important for 
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coastal stations, such as WAO, where radon activity concentrations can vary over 

several orders of magnitude (Chambers et al., 2011). 

The raw 222Rn data were quality-checked and averaged to one hour. The 

timestamps of the 222Rn data were shifted backwards in time by two hours to account 

for the lag caused by the delay volume and instrument response time of the radon 

detector. The two-hour shift was determined by calculating the lagged covariance of 

radon with hourly lag intervals from -5 to +2 hours, with the resultant covariances 

(normalised to the -5 hours results) shown in Figure 3.1; a time lag of -2 hours 

produced the highest covariance between 222Rn and each species. The optimum time-

lag of two hours is likely attributable to a combination of the 45 minute detector 

response time (Griffiths et al., 2016) and that the convention for radon observations 

is for the timestamp to mark the end of the sampling period, whereas the averaging of 

other gas species normally marks the beginning of the hour.  The widely used 

approach to account for the delayed detector response is to implement a time-

deconvolution to the raw observations (Griffiths et al., 2016); however, this was not 

able to be completed in the timeframe required here. 

 

Figure 3.1. Covariance of 222Rn with O2, CO2, H2, CH4, CO, and N2O, with a time-lag 
applied to the 222Rn data between -5 and +2 hours, normalised so that -5 hours = 1.  
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3.2.2 Other datasets 

A range of atmospheric gas species are measured routinely at the WAO; for the 

purposes of this study, to evaluate the potential of 222Rn as a tracer for regional 

maritime background (RMB) air masses, six species have been investigated: CO2, O2 

(reported as O2/N2 ratios), H2, CH4, N2O, and CO. This choice of species allows for the 

comparison of different background calculation methods for a number of gases with 

differing source and sink processes.  

The six gas species are measured at WAO using a variety of instruments, as 

explained here in brief. O2/N2 ratios and CO2 mole fractions have been measured 

continuously at WAO since 2008 (Adcock et al., 2023). The O2/N2 ratio (hereafter 

referred to as O2 for simplicity) is measured with a Sable Systems International Inc. 

‘Oxzilla II’ differential fuel cell analyser and reported on the Scripps Institution of 

Oceanography (SIO) O2/N2 scale (Keeling et al., 2007). CO2 is measured using a 

Siemens Corporation ‘Ultramat 6E’ non-dispersive infrared (NDIR) analyser and the 

time series used in this chapter is reported on the WMO-X2007 scale (Zhao and Tans, 

2006). 

CH4, records at WAO began in 2013, and N2O and CO records began in 2008; 

since 2018 they have been measured on a Fourier Transform Infrared gas and isotope 

analyser (FTIR, Ecotech SpectronusTM) (Griffith et al., 2012). The CH4 mole fraction is 

reported on the WMO-X2004A scale (Dlugokencky et al., 2005), the N2O mole fraction 

on the WMO-X2006A scale (Hall et al., 2007) and the CO mole fraction is reported on 

the WMO-X2014A scale.  

Molecular hydrogen (H2) has been measured since 2008 on a modified 

Reduction Gas Analyser (Forster et al., 2012) (RGA3, Trace Analytical, Inc., California, 

USA), which includes gas chromatography followed by the reduction of mercuric 

oxide, and the H2 mole fraction is reported on the Max Planck Institute for 

Biogeochemistry (MPI-BGC)-2009 scale (Jordan and Steinberg, 2011).  

The three-year time series (01Apr2018 – 31Mar2021) of 222Rn, O2, CO2, CH4, 

CO, N2O, and H2 used in this analysis are displayed in Figure 3.2, averaged to one-hour 

for each species. The small gaps present in the time series are due to flushing and 

calibration periods, and the longer gaps (particularly in CO2 and O2) are due to 

periods of instrument down-time or maintenance.  
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Figure 3.2. Time series of (a) O2, (b) CO2, (c) CH4, (d) CO, (e) N2O, (f) H2, and (g) 222Rn 
from WAO between 1st April 2018 - 31st May 2021, observations averaged to 1-hour 
for each species. 
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3.3 Radon regional maritime background estimation  

3.3.1 Methods 

3.3.1.1 Identifying a Radon threshold 

To identify air masses representative of a regional maritime background, a radon 

lower threshold limit needs to be determined to limit any potential terrestrial 

influences (e.g. land based CO2 emissions). Previous studies in the Southern 

Hemisphere have used a threshold of 50-100 mBq m-3, which can be confidently 

determined due to the lack of land masses (Brunke et al., 2004; Molloy and Galbally, 

2014; e.g. Chambers et al., 2016; Crawford et al., 2018). In the Northern Hemisphere 

there is a larger amount of residual terrestrial influence on the radon activity 

concentration, thus a new threshold needs to be defined. 

In order to determine this threshold, the deviations of hourly mole fractions of 

the gas species being investigated from the mean or minimum value were first 

investigated. In the case of species with predominantly surface sources (e.g.,CH4, N2O, 

CO), the 14-day running minimum value was taken and subtracted from the hourly 

observations and then these results were divided into 100 mBq m-3 Rn bins for each 

month. For species with both surface sources and sinks, the 14-day running mean 

was taken and subsequently subtracted from the hourly observations, and then 

divided into 100 mBq m-3 Rn bins. For each of the 222Rn bins the 10th, 50th, and 90th 

percentile values were then calculated; when the spread of the distribution (i.e. 90th – 

10th percentile values) is small, this means that the hourly observed values of the 

species are close to that of the seasonal trend (fortnightly mean/minimum value), 

whereas when the deviation distributions are broader this indicates that the hourly 

values are diverging more from the monthly mean/minimum values, as a result of 

surface source contributions.   

As an example, Figure 3.3 displays the results of the CH4 hourly deviation 

distributions from the 14-day running mean for each month in 2020 in 100 mBq m-3 

bins between 0-2000 mBq m-3. The higher radon activity concentrations have not 

been included here to focus on the clean air end of the radon concentrations. It is 

immediately clear that for the lowest radon activity concentration bins (<200 mBq m-

3), the deviation in the hourly CH4 mole fractions from the fortnightly mean is small. 
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As radon activity concentrations increase, indicative of terrestrial influence, the 

deviation in the CH4 distributions become larger, indicating that the hourly values are 

diverging from the monthly mean value due to influence from terrestrial sources and 

sinks. Gas species RMB estimates calculated from radon concentrations below 200 

mBq/m3 should therefore be fairly representative of an RMB, whereas those 

generated from radon activity concentrations ≤ 500 mBq m-3 would be more 

representative of regional background values. 

 

Figure 3.3. CH4 10th, 50th and 90th percentiles of the hourly deviations from the 14-
day running minimum for 100 mBq m-3 Rn bins from 0-2000 mBq m-3. The dotted 
vertical line indicates 200 mBq m-3.  
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In order to further investigate the degree of interaction with the land surface 

for varying activity concentrations of radon, back trajectory analysis using the Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model has been used to 

produce maps indicating the percentage of trajectories passing over each grid cell for 

varying radon thresholds. HYSPLIT back trajectory analyses are displayed in Figure 

3.4 for 222Rn ≤ 100 mBq m-3, 222Rn ≤ 200mBq m-3, and 222Rn ≤ 500 mBq m-3, based on 

concurrent radon activity concentrations for the HYSPLIT run timestamp. It is worth 

noting that this threshold value does not play as much of a role in selecting which 

observations are used in the RMB calculation as the 222Rn percentile used in step 1 

(see section 3.3.1.2 below), but it is used mainly to flag potential terrestrial influence 

on the final determined monthly RMB values for each species.  

Figure 3.4 shows the percentage of HYPLIT back trajectories run from WAO 

that passed over each grid cell when the radon activity concentration was less than 

100 mBq m-3, 200 mBq m-3, and 500 mBq m-3. These results indicate, that when the 

air mass arriving at WAO contains an activity concentration of less than 100 mBq m-3 

(Figure 3.4a), there has been very little interaction with the land surface (at least 

within the preceding 96 hours). However, there are also very few hourly observations 

in which the radon activity concentration is below 100 mBq m-3, only 141 within the 

three year time series, this is not enough data to use this threshold to produce a 

reliable RMB value. When looking at radon activity concentrations less than 200 mBq 

m-3 (Figure 3.4b), there is minimal terrestrial influence, with the highest percentage 

of trajectories passing over the North Sea and should therefore be representative of  

RMB conditions. There are also a larger number of datapoints (1106) that fall below 

this threshold. Finally, for the 500 mBq m-3 (Figure 3.4c) there is a far greater number 

of observations (3351); however, there is also a much greater interaction with 

European and UK land masses over the HYSPLIT trajectory period. This again shows 

that a threshold of 500 mBq m-3 would be more representative of a regional 

background, as discussed above. 200 mBq m-3 threshold is therefore a balance 

between obtaining enough data to represent the RMB and avoiding the adverse 

effects of terrestrial influences.  
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Figure 3.4. Percentage of HYSPLIT back trajectories from WAO over the entire 
measurement period which passed over each grid cell with radon activity 
concentrations less than (a) 100 mBq m-3 (b) 200 mBq m-3 and (c) 500 mBq m-3. Plots 
produced using HYSPLIT run through the ‘openair’ package in R  (Carslaw and 
Ropkins, 2012). 
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3.3.1.2 Implementing the Radon method 

In order to calculate the monthly RMB values for the gas species the threshold 

calculated above is implemented using the following method for each month (adapted 

from Chambers et al., 2017) (Figure 3.5): 

Step 1: Selection of hourly samples of each gas species from each month that 

are concurrent with ‘low radon’.  

a) Calculate the 1st and 3rd percentile 222Rn activity concentration for the month. 

b) If the 3rd percentile is less than the 200 mBq m-3 threshold retain the 

concurrent observations of the gas species being investigated and move to 

step 2. 

c) If the monthly 222Rn 3rd percentile is greater than the 200 mBq m-3 threshold, 

then only retain gas samples with a concurrent 222Rn activity concentration 

less than 200 mBq m-3 (if there are at least 7 observations that fit this criteria). 

d) If there are not at least 7 hourly observations within a month with a 222Rn 

activity concentration less than the 200 mBq m-3 threshold, then keep only the 

observations that are concurrent with the lowest 1st percentile of 222Rn 

activity concentrations for that month. For this situation, the month in 

question should be flagged to indicate that values may be slightly 

contaminated by local terrestrial influences. 

Step 2: For species that are expected to have mainly sources over the 

terrestrial measurement fetch remove extreme low values 

a) Calculate the monthly 25th percentile (P25), median (P50), and 75th 

percentile (P75) of the values retained in step 1.  

b) Calculate the P75 – P50 and P50 – P25 difference for each month 

c) If the P50 – P25 difference is larger than 10 times the P75 – P50 difference, 

then remove any values less than P50 – (0.5 * (P50 -P25)). 

Step 3:  Make a monthly RMB estimation for each trace gas (whether step a or 

b is used below will depend on the gas species being investigated). 

a) For atmospheric species that have both sources and sinks over the 

measurement fetch in recent days (e.g., CO2, O2, H2), calculate the median 

activity concentration or mole fraction of the samples retained in step 1 (this 

is the monthly RMB estimate) . 
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b) For species that are expected to have mainly sources over the measurement 

fetch (e.g., CH4, CO, N2O), then select only the lowest 25%-33% of observations 

from the values retained in step 2 (e.g., if 20 samples were available choose the 

lowest 5 mole fractions, if only 7 samples were available, choose the lowest 3 

mole fractions) then calculate the average monthly mole fraction from these 

retained values.  

For species which are expected to have primarily terrestrial sources (i.e. few 

terrestrial sinks) outlier removal may be required after step 1 in order to prevent 

skew in the final monthly RMB estimates from anomalously low values (step 2). This 

additional step is not required for species with sources and sinks as in step 3 we take 

the median, which acts as a type of extreme outlier removal, whereas for species with 

only sources we take the average of the lowest values, meaning this method is very 

susceptible to skewing from low values. A large skew in the opposite direction (i.e. if 

is P75-P50 is larger than P50-P25) is not considered, as we are taking the average of 

the lowest values anyway. 

In many applications of background values, an hourly value is required to 

match the timestamp of the species being investigated. As this radon method 

produced monthly values (where the timestamp of the final background estimate is 

set as the 15th of the month), these were then interpolated to hourly timestamps.
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                                     Figure 3.5. Flow chart detailing the radon derived RMB calculation methodology
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3.3.1.3 NAME composite footprints 

In order to investigate the origins of the air masses used to calculate the RMB 

estimate in the radon method, monthly NAME composite footprints for the air 

masses arriving at WAO were produced for the observations retained after step 1 

of the methodology (for April 2018 – December 2021). These NAME footprints are 

used qualitatively to evaluate the data selected during each month’s RMB 

estimation.  

The UK Met Office’s NAME (Jones et al., 2007) is a Lagrangian particle 

dispersion model that calculates dispersion by tracking the path-line of individual 

‘particles’ through time as it follows the average atmospheric motion within a 

specific period of time. The particles motion also have a random component to 

represent the effects of atmospheric turbulence. NAME uses the Met Office’s 

Unified Model and European Centre for Medium-Range Weather Forecasts 

Numerical Weather Prediction (ECMWF NWP) meteorological data (Jones et al., 

2007). 

NAME was run each hour from WAO with 20000 inert, theoretical, particles 

are released from a height of 10 m a.g.l from WAO, with a unit release rate of 1 g s-

1, backwards in time for 30 days or until they leave the computational domain. For 

each month, the NAME run for each hour that was used in the radon method RMB 

estimate was then combined into a ‘footprint’. These footprints are created by 

summing the NAME runs for each grid cell (0.325° longitude x 0.234° latitude) 

when the NAME particles had passed within 40 m of the surface. Thus, providing 

an indication of a grid cells influence to  the air mass being measured at WAO for 

any given hour.  

The timestamps used to create the NAME composite footprints represent 

those retained after step 1 of the method in section 3.3.1.2, so for species with both 

sources and sinks the mean of these timestamps was taken, whereas for species 

with predominantly surface sources the average of the lowest 25 - 33% of these 

timestamps was taken. 
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3.3.2 Results and discussion 

3.3.2.1 Radon data  

The hourly radon data time series from 1st April 2018 – 31st March 2021 is 

displayed in Figure 3.6a. Radon levels at WAO during this period range from 

around 40 to 13200 mBq m-3, with the former being indicative of long-range 

transport over 222Rn devoid regions, and the latter indicating interaction with 

terrestrial sources. Activity concentrations below 200 mBq m-3 occur more 

frequently during the late spring and summer months (i.e., May – August) each 

year; thus, indicating less terrestrial influence on air masses during these periods. 

Within Figure 3.6, months in which both the 1st and 3rd percentile radon activity 

concentrations are above the 200 mBq m-3 threshold are those that will be flagged 

for ‘potential terrestrial influence’. For some months the 3rd percentile radon does 

not fall below the 200 mBq m-3 threshold, but the 1st percentile does; for these 

months the calculated RMB s will not contain data where radon is greater than the 

threshold, but the monthly RMB estimate will be calculated from fewer hourly data 

points, and therefore may not be as robust.  

 

Figure 3.6. (a) Hourly radon activity concentrations at WAO from April 2018 – 
March 2021 (grey), with monthly mean (black), 3rd percentile (red) and 1st 
percentile (blue) overlayed. Dashed line indicates 200 mBq m-3 radon threshold. 
Note the logarithmic y-axis scale. (b) Number of monthly radon values below 200 
mBq m-3.  
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The number of hourly radon data points below the 200 mBq m-3 threshold 

each month is highly variable (Figure 3.6b). Seasonally, the radon activity 

concentration is higher over the autumn and winter months than the spring and 

summer. Three months have over 100 hourly radon data points below 200 mBq m-

3:  May 2020 has the most with 136 hours below the threshold, followed by June 

2018 with 126 points and May 2019 with 108. Seven months don’t have any hourly 

values below the 200 mBq m-3 threshold (November 2018, December 2018, 

February 2018, August 2019, February 2020, November 2020, and February 

2021), therefore the RMB estimate during these months is more likely to have 

more influence from terrestrial sources and sinks, and thus will require further 

investigation into how suitable the radon method is during these scenarios for 

producing an RMB estimate. These months, with the exception of August 2019, are 

all during the late autumn to winter period, which corresponds with the higher 

radon activity concentration observed. The decrease in radon activity 

concentration excursions below the 200 mBq m-3 threshold observed over winter 

may be due to fewer air masses arriving at WAO from the maritime sector (N – 

NE). Figure 3.7 displays a wind rose for each season. During the spring and 

summer months the wind direction was more frequently N/NE (i.e., from the 

direction of the North Sea) than during the winter, when this wind direction 

occurred infrequently. During autumn and winter the wind direction was 

predominantly from the SE, thus passing over the UK mainland before arriving at 

the WAO, with fewer observations from other wind directions. This means that 

during this period WAO may not be experiencing many air masses that can be 

considered as representative of the RMB and can explain why the number of 

monthly radon data point below the 200 mBq m-3 threshold is much lower during 

the winter months. The implication of this is that the RMB calculation method 

described in this chapter may be less successful over the winter; this will be 

explored in the following sections.   

To further qualitatively investigate the origins of air masses used to 

calculate the monthly radon RMB estimates, NAME composite footprints were 

produced. These footprints display the origins of air masses corresponding to 

observations retained after ‘step 1’ of the radon RMB calculation methodology. For 

species with ‘sources and sinks’ the median of these values was taken, whereas for 
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species with ‘primarily sources’ the mean of the lowest 25 – 33% of these values 

was taken. 

 Figure 3.8 shows the composite footprints of data retained after step 1 for 

2018, 2019, and 2020. Generally, the largest density of air masses arrive at WAO 

from over the North Sea, as would be expected from a clean maritime air mass. For 

the air masses that have passed over the UK mainland, it is likely that these air 

masses occur during months which were flagged for ‘potential terrestrial 

influence’. There is very little interaction seen with mainland Europe.  

  

 

Figure 3.7. Seasonal wind roses for WAO. Produced using the ‘openair’ package in 
R and meteorological data between 01Apr2018 – 31Mar2021.  
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Figure 3.8. NAME composite footprints for 30-day backwards runs for (a) 2018, 
(b) 2019, and (c) 2020 displaying grid cell contribution to air masses arriving at 
WAO corresponding to timestamps of observations retained after step 1 of the 
radon RMB calculation methodology. Note, the unit change for the 2020 footprint 
to ppm s [TBC], which are to be confirmed. As these footprints are only being used 
for a qualitative analysis the unit is not as relevant as the scale. 

3.3.2.2 Radon-derived regional maritime background estimates 

In this section the final RMB estimates for each species using the radon method are 

presented in Figure 3.9; these results are calculated using a 222Rn threshold of 200 

mBq m-3, the 3rd percentile as the upper percentile limit and the 1st percentile as 

the lower percentile limit. Months in which the RMB estimate is coloured in red in 

Figure 3.9 are flagged for potential terrestrial influence as the method used to 

compute these values retained the lowest 1st percentile of observations for the 

month and may be concurrent with radon activity concentrations above the 200 

mBq m-3 threshold. In total, 14 of the 36 months are flagged for potential 

terrestrial influence, which is a significant number, these months will be further 

investigated in the method comparison (section 3.5) to determine the validity of 

using radon as an RMB selection method under these conditions. Most of these 

months fall within the late autumn – winter period, which is caused by the higher 

radon activity concentrations observed at WAO during this period thus resulting in 
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fewer data points below the 200 mBq m-3 threshold (as discussed in section 

3.3.2.1).  

Any month that is missing an RMB estimate for any species is due to gaps in 

the  time series corresponding to times where the radon activity concentration 

meets the selection criteria. This is a drawback of this method as in some months 

less than 10 hourly radon points meet the given criteria, so if another analyser is 

down for any reason during this short period an RMB estimate will not be 

calculated for that entire month. This can particularly be seen in August and 

September 2018 for the H2 estimates as the data gaps are small (Figure 3.9), but no 

RMB estimate is produced for either month; whereas, for June and July 2019 there 

is no RMB estimate for CO2 or O2, but the gap in the data covers the majority of this 

period so this missing RMB value is not as surprising. Gaps in the datasets not only 

mean that an RMB estimate may not be produced for the given month but, possibly 

more importantly, mean that an estimate may be produced from only one value 

which can significantly bias the monthly estimate. This highlights the need to 

manually check the underlying data that has been used to calculate each month’s 

estimate. For the RMB estimate produced by radon in this chapter, there is only 

one month in which a single value was used to produce the RMB estimates. In 

August 2019 the monthly radon RMB estimate for all species, except H2, is based 

on a single hourly data point. This is because the O2 and CO2, and N2O, CH4 and CO 

analysers were not running between 01/08/2019 and 13/08/2019, 10/08/2019 

and 13/08/2019, respectively. This is the period in which the radon values met the 

criteria for the observations to be used in the monthly RMB calculation. As only a 

single value is used to calculate this month’s RMB, it will be removed from all 

further analysis as it is not reliable to define an entire month’s RMB mole fraction 

based on a single hourly observation.  



   
 

105 
 

 

Figure 3.9. Hourly averaged time series (grey), and monthly RMB estimates using 
222Rn (blue and red crosses), where the red crosses are for months in which the 
method was flagged, for each species.  

For species with primarily sources (i.e., few sinks) over the terrestrial fetch, 

an additional method step of ‘outlier removal’ was also completed in order to 

prevent the monthly RMB estimates from being skewed by anomalously low 

values. The outlier removal only affected the values retained for CH4 in Nov2020, 

and in Apr2019, Jun2019 and Nov2020 for CO. As an example, box plots showing 
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the monthly RMB values retained after ‘step 1’ and ‘step 2’ (outlier removal), are 

displayed in Figure 3.10a and b, respectively. 

 

Figure 3.10. Box plots of the monthly CO values retained after (a) step 1 and (b) 
step 2 of the radon RMB calculation method.  

Comparing the NAME footprints for the flagged vs. non-flagged months, 

there is a distinct difference in the source regions. As would be expected, the non-

flagged months have little recent interaction with any land surface (e.g. Figure 

3.11a and b), whereas during the flagged months observations used in the RMB 

calculation are frequently from air masses which have recently passed over the UK 

(e.g. Figure 3.11c and d). This indicates that the radon methodology is correctly 

identifying months in which the RMB estimate may have some terrestrial 

influence, and that in non-flagged months the air masses are representative of the 

RMB.  
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Figure 3.11. NAME composite footprints for 30-day backwards runs for (a) 
Apr2018, (b) May2018, (c) Sep2018, and (d) Nov2018. Apr2018 and May2018 are 
not flagged, and Sep2018 and Nov18 are method flagged for potential terrestrial 
interaction.  

3.3.2.3 Threshold sensitivity analysis 

The thresholds set in the RMB selection method described in section 3.3.1.2, are 

based on the investigation described in section 3.3.1.1. In order to determine the 

robustness of the resulting estimates with these threshold values, a threshold 

sensitivity analysis was completed. Radon thresholds of 100, 200 and 500 mBq m-3 

were investigated, with upper percentile values of 0.1, 0.05 and 0.03 (step 1b/c), 

and lower percentile values (step 1d) of 0.05, 0.03 and 0.01 (Table 3.1). In total 18 

different variations of the threshold limits were run for each gas species. 

For each species, 18 RMB estimates were therefore produced for each 

month; the mean, SD, maximum, and minimum RMB estimate of the 18 threshold 

variations for each month were calculated. The mean and SD over all 36 months, 

RMB estimates for each species were then also calculated. If the SD on the mean of 

any given month is greater than 5 times larger than the SD of all the months, that 

month’s final RMB estimate should be flagged as less robust.   
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Table 3.1. Variations of radon threshold and upper and lower percentile values 
used in threshold selection analysis of RMB estimation method 

Threshold 
combination # 

Rn 
threshold 
(mBq m-3) 

Upper 
percentile 

Lower 
percentile 

1 100 0.03 0.01 
2 100 0.05 0.01 
3 100 0.05 0.03 
4 100 0.1 0.01 
5 100 0.1 0.03 
6 100 0.1 0.05 
7 200 0.03 0.01 
8 200 0.05 0.01 
9 200 0.05 0.03 

10 200 0.1 0.01 
11 200 0.1 0.03 
12 200 0.1 0.05 
13 500 0.03 0.01 
14 500 0.05 0.01 
15 500 0.05 0.03 
16 500 0.1 0.01 
17 500 0.1 0.03 
18 500 0.1 0.05 

 

The results of the threshold sensitivity analyses are summarised in Figure 3.12. 

Each of the combinations of threshold values does not produce a unique value for 

each monthly RMB estimate but are grouped into three to five unique values 

repeated within the 18 combinations. For example, the estimate produced for CO2 

in April 2018 using the thresholds of: ‘Rn < 100 mBq m-3, upper percentile 0.05, 

and lower percentile 0.03’ and ‘Rn < 200 mBq m-3, upper percentile 0.03, and 

lower percentile 0.01’, both give a monthly RMB value of 413.56 ppm, with the 

former combination being method flagged for potential terrestrial influence. These 

groupings are due to the different threshold combinations often selecting the same 

hourly values for each species for the final RMB calculation and explain the low 

standard deviations between the different threshold combinations displayed in 

Figure 3.12.  
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Figure 3.12. Threshold analysis results. Mean ± 1σ SD monthly RMB estimate of 
the 18 threshold selection analysis threshold combinations for (a) O2, (b) CO2, (c) 
H2, (d) CH4, (e) CO, and (f) N2O.   
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Table 3.2. Average monthly SD for each species, flagging threshold (5x average 
SD) and average SD with flagged value removed. 

 CO2 
(ppm) 

O2 (per 
meg) 

CH4 
(ppb) 

CO (ppb) N2O 
(ppb) 

H2 (ppb) 

Average SD ± 
1σ SD 

0.30±0.31 3.00±3.22 1.91±4.32  2.18±4.08 0.02±0.02  1.30±2.84 

Flagging 
threshold (5x 

average SD) 

1.54 16.12 9.58 10.88 0.11 14.19 

Average SD ± 
1σ SD with 

flagged 
months 

removed 

0.30±0.31 3.00±3.22 1.23±1.32 1.05±1.20 0.02±0.02 0.85±0.85 

 

Table 3.2 shows the average SD over all months for each species, this was 

calculated by taking the SD of the RMB estimates produced for each month (i.e., the 

error bars in Figure 3.12) then averaging these values. Any individual month 

where the SD exceeded the average multiplied by a factor of five was then 

removed. When flagged months are removed from the average SD, the lower 

uncertainty limits for each species overlap with (Table 3.2), thus indicating a 

robust result. The months with a considerably higher SD (over 5x the average SD) 

are the same months in which outliers were removed for CO and CH4 in ‘step 2’ 

(section 3.3.2.1); this is because when using some combinations of threshold 

values, outliers are not removed. Additionally, November 2020 is flagged for H2; 

for this month the results are still grouped into a few values, but there is a large 

spread between the values.  

For all species, except H2, an RMB estimate is produced for every threshold 

combination for each month an estimate is produced. For H2 there are six months 

for which some threshold combinations did not produce a result (May2018, 

Aug2018, Sep2018, Mar2019, Aug 2020, Mar2021). This is because during these 

months there are gaps in the H2 time series (Figure 3.2), so when both the 222Rn 

and percentile thresholds are lower, there are not enough available data points to 

produce an estimate.  
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3.4 Method comparison 

3.4.1  Calculation of background using established methodologies 

To contextualise the regional maritime backgrounds derived in section 3.3.2.2, I 

have compared my results to backgrounds derived using four different methods:   

atmospheric transport models (NAME and STILT), a statistical method known as 

robust extraction of baseline signal (REBS), and a meteorologically derived 

background (MET). There are a few important considerations to be taken into 

account throughout this section and the following discussion: (1) none of these 

background methods or results are inherently ‘correct’ or ‘incorrect’, (2) REBS is 

not defining an RMB as it is not based on any met/transport data, but is instead 

defining a statistical background based on the observations, (3) the NAME 

background is representative of the background at Mace Head, Ireland (MHD), not 

an RMB at WAO.  

Table 3 shows the frequency and availability of data for each background 

method. For the purposes of this comparison, all of the background estimates were 

interpolated to hourly values. 

Table 3.3. Frequency and data availability for  each background estimation 
method and gas species. 

 Background method 
Radon REBS NAME  

(MHD) 
STILT MET 

Frequency Monthly Hourly Monthly 3-hours Monthly 
O2 15Apr18-

15Mar21 
01Apr18-
31Mar21 

  15Apr18-
15Mar21 

CO2 15Apr18-
15Mar21 

01Apr18-
31Mar21 

15Apr18-
15Mar21 

01Apr18-
31Dec20 

15Apr18-
15Mar21 

H2 15Apr18-
15Mar21 

01Apr18-
23Mar21 

15Apr18-
15Mar21 

 15Apr18-
15Mar21 

CH4 15Apr18-
15Mar21 

01Apr18-
31Mar21 

15Apr18-
15Mar21 

 15Apr18-
15Mar21 

CO 15Apr18-
15Mar21 

01Apr18-
31Mar21 

15Apr18-
15Mar21 

 15Apr18-
15Mar21 

N2O 15Apr18-
15Mar21 

01Apr18-
31Mar21 

15Apr18-
15Mar21 

 15Apr18-
15Mar21 
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3.4.1.1 Robust Extraction of Baseline Signal 

The robust extraction of baseline signal (REBS) method was developed by 

Ruckstuhl et al. (2012) and can be implemented using the ‘rfbaseline’ function 

from the ‘IDPmisc’ package in R (Ruckstuhl et al., 2020). This function uses a 

statistical approach, based on local regression of the time series, over a moving 

time window (‘span’). The asymmetrical weighting of the REBS function is 

particularly appropriate for species where the  excursion events are all in the same 

direction i.e. either mostly positive or mostly negative. Ruckstuhl et al. (2012) state 

that this method can be applied at any background station to time series of trace 

gases without significant surface sinks and latitudinal concentration gradient. This 

methodology of background selection is highly subjective, and dependent on a 

somewhat arbitrary selection of input variables; nevertheless, it is a tool often 

used in atmospheric research, thus its inclusion in this chapter is valuable.  

The rfbaseline function has three user definable input variables: ‘maxit’, 

‘span’, and ‘B’. The span influences the amount of smoothing by specifying the 

fraction of points used to compute each fitted value, maxit specifies the number of 

iterations in the robust fit using an asymmetric biweight function, and B is the 

tuning constant in the biweight function that represents the standard deviation of 

data below the baseline curve and thus determines how much the function ignores 

higher values, where a higher B value results in a higher baseline.  

The B and span input parameters have the most influence on the resultant 

baseline, in order to determine the optimum values for these two parameters 

rfbaseline was run multiple times for each species with varying span and B inputs. 

The span was run using 2 week intervals from 2 weeks to 12 weeks, whilst B was 

held at 1.5. The B value was then run as the following: 0.01, 0.05, 0.1, 0.5, 1, 2, and 

4, whilst the span was held at 8 weeks. This was completed for each of the six 

species; the results of these runs for CH4, CO2, and H2 are displayed in Figure 3.13, 

Figure 3.14, and Figure 3.15, respectively. It should be noted that the parameters 

chosen in the following discussion are chosen subjectively, which is an intrinsic 

negative feature of the REBS background calculation method.  
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Figure 3.13. (a) REBS background results for CH4 when varying span between 2 
and 12 weeks, when B is held at 1.5. (b) REBS background results for CH4 when 
varying B between 0.01 and 4, when span is held at 8 weeks. Note: the y-axis scale 
does not span the entire CH4 concentration range in order to better display the 
differences between the REBS baselines.  

For CH4, when the span is set at 2, 4, or 6 weeks, the background picks up 

too much of the short-term variation (Figure 3.13a). When the span is set at 8, 10 

and 12 weeks the background is much smoother and follows the longer-term 

trends (Figure 3.13a). The baselines with 10 and 12 week spans have higher 

annual cycle minima, therefore the 8 week span was chosen for calculating CH4, 

N2O and CO backgrounds. The B value changes the height at which the baseline sits 

on the data. For CH4, CO and N2O, (species that do not have many land-based sinks) 

the background would be expected to sit lower on the observations. The B values 

of 0.5 – 4 all produce a baseline that appears too high. The B values of 0.01 – 0.1 all 

produce very similar baselines, therefore the middle value of 0.05 was selected to 

produce the REBS background estimates for CH4, CO and N2O.  
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Figure 3.14. (a) REBS background results for CO2 when varying span between 2 
and 12 weeks, when B is held at 1.5. (b) REBS background results for CO2 when 
varying B between 0.01 and 4, when span is held at 8 weeks.  

For CO2 (and O2), as with CH4, the span lengths below 8 weeks are strongly 

influenced by short-term variation in the observations, whereas a span of 8 weeks 

or above produces a much smoother baseline (Figure 3.14a). There is very little 

difference between the results of the 8, 10 and 12 week spans for the majority of 

the timeseries, but again the 10 and 12 week inputs produce baselines that sit 

higher in the data minima; therefore, 8 weeks was selected as the span value for 

CO2 and O2. It is also logical for the same span value to be used for all species, as 

this period relates directly to the length of observations input and thus to 

atmospheric mixing time, whereas the B value is a purely statistical parameter.   

The B values between 1 and 4 again produced baselines that sit too high on 

the dataset (Figure 3.14b). As CO2 (and O2) have significant land-based sinks the 

baseline should not sit at the bottom of the dataset (as was the case with CH4) 

therefore, the B values of 0.1, 0.05 and 0.01 sit too low. A B value of 0.5 was 

therefore selected to produce the REBS background estimates for CO2 and O2.  
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Figure 3.15. (a) REBS background results for H2 when varying span between 2 and 
12 weeks, when B is held at 1.5. (b) REBS background results for H2 when varying 
B between 0.01 and 4, when span is held at 8 weeks.  

As discussed above, the input span value should remain the same for all 

species, therefore 8 weeks was again selected for H2. For H2, as there are significant 

land-based sources and sinks, the lower B values are significantly skewed to the 

lower data points (Figure 3.15b). Even when increased to 2, the lower datapoints 

are having a large impact on the resultant baseline; therefore, a B value of 4 was 

selected to produce the H2 REBS background estimate. The large skew towards the 

drawdowns in the H2 time series when setting the B value is not unexpected, as 

Ruckstuhl et al. (2012) state that this method can ‘be applied to any background 

station to time series of trace gases without significant surface sinks’. As the main 

sink of H2 is soil deposition (Ehhalt and Rohrer, 2009), REBS is not the most 

appropriate method for selection of H2 background values, however it is still being 

included in this comparison for completeness, and a B value which reduced the 

biasing from the large deposition events was selected accordingly.  

The REBS output are produced on the same timestamp as the input data, 

but a datapoint is not created for any gaps in the input data. This output was then 

interpolated to hourly cover any gaps in the input data for the purpose of 

comparison to the radon background. 
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3.4.1.2 NAME particle dispersion model (Mace Head) 

The UK Met. Office’s NAME (Jones et al., 2007) is a Lagrangian particle dispersion 

model that calculates dispersion by tracking the path-line of individual ‘particles’ 

through time as it follows the average atmospheric motion within a specific period 

of time. The particles’ motion also have a random component to represent the 

effects of atmospheric turbulence. NAME uses the Met Office’s Unified Model and 

European Centre for Medium-Range Weather Forecasts Numerical Weather 

Prediction (ECMWF NWP) meteorological data (Jones et al., 2007). 

The methodology used to compute the NAME derived time-varying 

background mole fractions is described in full in Manning et al. (2021), but can be 

briefly summarised as the following: 20000 inert, theoretical, particles are 

released from a height of 10 m a.g.l each hour from MHD, with a unit release rate of 

1 g s-1, backwards in time for 30 days or until they leave the computational domain 

(98.1° W to 39.6°E, 10.6 ° to 79.2°N). Thus, NAME generates a modelled mole 

fraction contribution to MHD for each grid cell over the 30 days for each 4-hour 

period. The background times are then defined as periods where the 30-day air 

history from NAME is dominated (> 80 % of particles) by air from the Atlantic that 

entered the NAME domain from the western or northern edges and when the 

amount of land crossed within 62.5 km of the MHD station is small. Using these 

background times, a polynomial is then fitted to the mole fractions; any 

background times that are significantly different to the fitted background are 

identified and removed from the set of background times and another polynomial 

is then fitted with the new set of background times to produce the final 

background mole fraction for MHD. 

The NAME modelled backgrounds in this chapter are derived from, and 

therefore represent, in situ observations at Mace Head (MHD), located on the west 

coast of Ireland (53°33’N, 9°904’W) (Figure 3.16) and were provided by Alistair 

Manning from the UK MetOffice. Mace Head is considered a background station in 

the World Meteorological Organisation (WMO) Global Atmosphere Watch (GAW)  

programme and is  representative of mid-latitude northern hemispheric 

background air masses with, on average, over 50% of the air masses arriving at 

MHD recently having passed over the North Atlantic Ocean (Ebinghaus et al., 

2011). For this reason, it is used by the DECC UK emissions verification 
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programme network as a baseline upon which UK emissions  are estimated 

(Stanley et al., 2018). 

  

Figure 3.16. Map of the UK and Ireland displaying the location of MHD (blue) and 
WAO (red). 

The baseline estimates from MHD were provided for CO2, CH4, CO, N2O, and 

H2. However, as O2 is not routinely measured  at  MHD , no NAME background 

estimate is available for this species for the purposes of comparison. Greenhouse 

gas measurement networks in the UK have evolved independently over the years 

depending upon funding sources, as a result MHD and WAO do not use the same 

primary reference scales for some species. At MHD, CO2, CO, and H2 are reported 

on the same scales as at WAO: WMO-X2007, WMO-X2014A, and MPI-2009, 

respectively. Methane is reported on the TU-1987 scale at MHD, whereas it is 

reported on the WMO-X2004A scale at WAO. N2O at MHD is reported to the SIO-16 

scale, whereas it is reported to the WMO-X2006A scale at WAO. The NAME 

backgrounds calculated for MHD for CH4 and N2O have still been included in this 

comparison despite the differing scales, but this has been taken into consideration 

in the discussion of these results. The NAME derived background estimates are 

produced on daily, monthly, and annual timestamps. For this study I have used the 

monthly estimates (timestamp on the 15th of the month) in order to match the 

timestamp of the radon calculated backgrounds. These monthly estimates were 
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then interpolated to hourly for consistency in the comparisons with the other 

methodologies.  

3.4.1.3 STILT back trajectory model 

The STILT (Stochastic Time-Inverted Lagrangian Transport) model (Lin et al., 

2003) is a Lagrangian particle dispersion model for atmospheric transport. STILT 

simulates atmospheric transport by following a particle ensemble backward in 

time from its release at the measurement site, and the footprints that represent the 

sensitivity of tracer concentrations at the site to surface fluxes upstream are 

calculated. The STILT footprints for WAO are produced by the ICOS Carbon Portal 

(https://stilt.icos-cp.eu/viewer/) driven by a 3-hourly analysis of the ECMWF-IFS 

(Integrated Forecasting System) atmospheric circulation model at a 0.25° x 0.25° 

resolution and mapped onto a 1/12° latitude x 1/8° longitude grid. The footprints 

are then coupled to the biosphere model VPRM (Vegetation Photosynthesis and 

Respiration Model) (Mahadevan et al., 2008) and anthropogenic emissions from 

the EDGAR v4.3 emission inventory (Janssens-Maenhout et al., 2019) to simulate 

atmospheric CO2 mole fractions. The background mole fraction produced from 

STILT represents the influence from sources and sinks outside the STILT model 

domain and prior to the start of the model run. These initial and lateral boundary 

conditions are taken from the Jena CarboScope global 3D atmospheric CO2 mixing 

ratio fields (http://www.bgc-jena.mpg.de/CarboScope/).   

The STILT runs from the ICOS Carbon Portal produce a CO2 background 

mole fraction for WAO every 3-hours; for the purpose of comparison to the other 

background methods, the data was interpolated to every hour.  

3.4.1.4 Meteorologically and standard deviation filtering  

Background estimates for each species were determined through a filtering 

process taking into account the variability in the species mole fractions and 

meteorological conditions that indicate the site is sampling air that has recently 

passed over the North Sea (e.g. Brailsford et al., 2012). First, the 5-hour running SD 

of each gas species time series was calculated in order to identify periods of stable 

data. Hourly averaged wind speed and wind direction data were then used to 

further filter the data to a ‘maritime air sector’. In order to exclude measurements 

https://stilt.icos-cp.eu/viewer/
http://www.bgc-jena.mpg.de/CarboScope/
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potentially influenced by local sources during low wind speeds, only 

measurements concurrent with wind speeds greater than 5 m s-1 were selected 

(Schuepbach et al., 2001). Next, the wind direction of between 340° and 45° filter 

was applied, in order to only include air masses from the maritime sector. 

After the meteorological filters were applied, the remaining data was 

further filtered using the previously calculated 5-hour running SD. The gas species 

data points corresponding to the lowest 50% of the remaining 5-hour running SD 

values were then retained and averaged to produce a monthly background 

estimate for each gas. These monthly estimates were then interpolated to hourly 

values for comparison with the other background methods; if there was a gap in 

the met estimates of 3 months or greater, the months either side of the gap were 

not interpolated between.  

3.4.2 Results and discussion  

The results of the comparison of each background method described above with 

the radon derived backgrounds are described and discussed in the following 

section. For comparison, each of the background estimates have been interpolated 

to hourly values. If there is a gap of 3 or more months, this gap was not 

interpolated over.  

3.4.2.1 CO2  

The method comparison of the CO2 backgrounds calculated using radon, REBS, 

NAME, STILT, and the MET methods are displayed in Figure 3.17. Over the entire 

time period, the average of the absolute difference between the radon background 

and REBS is 2.02 ± 2.05 ppm, for the NAME background the average absolute 

difference is 0.77 ± 0.66 ppm. The average absolute difference from the radon 

background is 1.08 ± 0.90 ppm and 0.98 ± 1.09 ppm for the STILT and MET 

methods, respectively.  

Compared to the radon, NAME, and MET derived estimates, the STILT 

estimate is far more variable (Figure 3.17), this is due to the timestamp of the 

original STILT background estimate before it was interpolated to hourly values. 

The STILT estimate is produced for every 3-hour time-step and then interpolated 

to hourly, whereas the radon, NAME, and MET backgrounds were produced on a 
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monthly timestamp and then interpolated to hourly values thus producing a 

smoother curve. Other than the more variable STILT background, STILT and NAME 

both produced similar background estimates, with the STILT background following 

similar trends than NAME but with more noise. The average NAME – STILT 

absolute difference over the entire time series is 0.86 ± 0.74 ppm. These 

background methods are both produced using Lagrangian particle distribution 

models and use the ECMWF circulation data; however, the NAME background 

values are calculated using CO2 observations from MHD, whereas STILT uses Jena 

CarboScope global 3D atmospheric CO2 mixing ratio fields.  

 

Figure 3.17. (a) Difference from radon background estimate, where the radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) CO2 time series and background 
estimates using radon, REBS, NAME, STILT, and MET methods.  

The average absolute difference between the NAME and the radon 

backgrounds is 0.28 ± 0.98 ppm; however, the error given on the NAME CO2 

monthly estimates varies between 0.523 and 0.9825 ppm. The agreement between 

the NAME and radon methods is good, particularly as the NAME background was 

calculated using data from MHD which receives predominantly maritime air 

masses from the North Atlantic Ocean with very little, if any, terrestrial or 

pollution sources or sinks, and thus is a good site for determining background 

signals; thus the radon method is appropriately filtering out air masses with recent 

terrestrial influence. The similarity in these estimates also indicates that even 
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though NAME was not run for the study field station, MHD observations can 

provide a suitable background estimate for CO2 at WAO when using NAME. The 

average difference between the NAME and MET methods is very small, 0.09 ± 1.47 

ppm, however this difference does vary between a maximum of 4.96 and -4.11 

ppm. The small average difference shows that the MET method is filtering out  

terrestrial air masses with influence from localised sources and sinks. Additionally, 

the general variability is similar to that of the STILT methodology which is based 

on more complex meteorological fields of atmospheric transport. 

In Figure 3.17 there are a number of months in which the radon method 

differs from all four of the other methodologies, the majority of these months are 

those that were flagged for ‘potential terrestrial influence’. Of the 35 months that 

the 222Rn method produced a background estimate, 14 of these were flagged for 

potential terrestrial influence, due to the data selection method used (grey shaded 

months in Figure 3.17). The average difference of the REBS, NAME, STILT, and MET 

estimates for the 14 flagged and 21 non-flagged monthly estimates are shown in 

Table 3.4,. For each background calculation method, with the exception of REBS, 

the average absolute difference from the 222Rn estimate is smaller in the unflagged 

months; however, this difference is not significant and for each method the errors 

(±SD) between the flagged and non-flagged months overlap. For the REBS method, 

the flagged months are closer to the radon background value than the non-flagged 

months. However, the controlling factor in this is that the REBS estimate differs 

largely from the radon estimates during the spring/summer months, and these 

months also happen to be the months in which the radon method is most 

commonly not flagged. Where the absence of flags on the radon method during the 

spring/summer is caused by a higher frequency of air masses passing over the 

maritime sector before arrival at WAO than during the autumn/winter, as 

discussed in section 3.3.2.1.  
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Table 3.4. Average of the absolute difference from the 222Rn method background 
estimate for flagged and non-flagged months for REBS, NAME, STILT, and MET 
background estimates. 

 Non-flagged 
months 

(average ± SD) 
(ppm) 

Flagged months 
(average ± SD) 

(ppm) 

REBS – Rn 3.00 ± 2.37 1.12 ± 0.98 
NAME – Rn 0.97 ± 0.89 0.99 ± 0.93 
STILT – Rn 1.00 ± 0.8 1.12 ± 0.98 

MET - Rn 0.88 ± 0.86 0.95 ± 1.78 

 

The CO2 background estimates in Figure 3.17b display an evident seasonal 

cycle, with an annual maximum during the late winter months, minimum during 

the late summer, and a seasonal cycle amplitude of around 15 ppm. Over the spring 

months, during the Northern hemisphere growing season, there are more localised 

terrestrial CO2 sinks, therefore the background should sit higher on the 

observations during the spring. This background characteristic can be seen in the 

222Rn, NAME, and STILT background estimates, but not in the REBS estimate 

(Figure 3.17b). The difference between the REBS background estimate and the 

radon estimate therefore has a seasonal cycle due to this discrepancy, which 

cannot be seen with the NAME and STILT differences from the radon method 

(Figure 3.18). The opposite is the case over the winter months, where the local 

terrestrial CO2 source is larger than the sinks so the background should be lower; 

again, the REBS estimate does not produce this trend and is therefore higher than 

the radon estimates over the winter months (DJF) (Figure 3.18). The terrestrial 

drawdown of CO2 that occurs during the spring and summer months, and emission 

during the autumn and winter are not representative of the wider background, 

whereas the REBS method is assigning these localised fluxes into the background 

component. As the REBS estimate disagrees with all the other methodologies 

during this period, there is confidence that it is the REBS estimate that is not 

producing a representative RMB, not the radon; additionally, the asymmetrical 

weighting of the REBS function mean that it is not a particularly applicable species 

in which the deviations are not either mostly positive or mostly negative. REBS is a 

purely statistical background estimate method, and thus has no prior information 

other than the CO2 mole fraction time series causing the discrepancy in the 

seasonality of this background estimate in comparison to radon. Conversely, both 



   
 

123 
 

the NAME and STILT background estimates have inputs of CO2 mole fractions and 

atmospheric circulation data.  As the input parameters to the REBS code are user 

defined, changing these could improve the agreement between the radon and 

REBS estimates seasonally. Increasing the B value used as an input would decrease 

the difference between the radon and REBS estimate during the spring months, 

however this would then increase the difference during winter. Further, if REBS 

were to be run as the sole background estimation method, this information 

regarding the seasonal differences would not be available.  

 

Figure 3.18. Mean monthly difference between REBS (blue), NAME (green), STILT 
(orange), and MET (purple) derived backgrounds compared to the radon 
background calculation.   

3.4.2.2 O2  

The O2 time series and method comparison of the O2 backgrounds calculated using 

radon, REBS, and MET methods are displayed in Figure 3.19. Over the entire time 

period, the average difference between the radon background and REBS is 13.86 ± 

12.30 per meg, for the MET derived background the average difference is 6.48 ± 

6.44 per meg.  
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Figure 3.19. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) O2 time series and background 
estimates using radon, REBS, and MET methods.  

The O2 background estimates display a distinct seasonal cycle, with the 

maxima in late summer (August) and minima during late winter (February), with a 

seasonal cycle amplitude of around 150 per meg (Figure 3.19b). The difference 

between the REBS and 222Rn background estimates also displays a seasonal cycle, 

with the REBS estimate being higher than the 222Rn estimate in spring/summer, 

and lower in autumn/winter. During spring-summer in the northern hemisphere, 

there is an increase in photosynthesis, thus an increase in localised land sources of 

O2, whereas in the autumn-winter there is an increase in localised land sinks of O2. 

Due to this seasonal cycle in the sources and sinks of O2, it would be expected that 

the background would be higher during the spring-summer months, and lower in 

the autumn-winter. This seasonal difference can be seen in the 222Rn background 

estimate, but is not apparent in the REBS estimate. This is the cause of the seasonal 

difference between the REBS and 222Rn estimates in Figure 3.19a. This is due to the 

same reasons discussed in section 3.4.2.1 for CO2, where the terrestrial emission of 

O2 that occurs during the spring/summer months, and drawdown during the 

autumn/winter are not representative of the wider background, whereas the REBS 

method is assigning these localised fluxes into the background component. As with 

CO2, the input parameters of the REBS function could be tweaked to correct for the 
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large spring/summer difference from the radon background estimate; however, 

this would cause an increase in the difference during the autumn/winter, and 

again, if REBS were being used as the only background estimation method this 

seasonal discrepancy would be unknown to the user. There is also a seasonal 

difference observed between the MET and radon methods in Figure 3.20; however, 

this is less pronounced than the REBS-radon difference, and rather than being 

caused by a consistent difference, it is due to a few spikes in the MET background 

(Figure 3.19). 

 

Figure 3.20. Mean monthly difference from the radon background for REBS (blue) 
and MET (purple). 

3.4.2.3 H2  

The method comparison of H2 backgrounds calculated using radon, REBS, NAME, 

and the MET methodologies are displayed in Figure 3.21. Over the entire time 

period, the average of the difference of the absolute values between the radon 

background and REBS is 6.27 ± 4.53 ppb, for the NAME background the average 

absolute difference is 11.95 ± 4.24 ppb. The average absolute difference from the 

radon background is 11.96 ± 4.40 ppb for the MET method.  

The H2 observations and associated background estimates all display a 

distinct seasonal cycle, with spring maxima and autumn minima and a seasonal 

cycle amplitude in the background estimates of around 50 ppb. All four methods 

pick up the seasonal cycle in the H2 data, with peaks in early autumn attributed to 

higher loss rates by the OH radical and stronger rates of soil deposition with drier 

soil conditions (e.g. Steinbacher et al., 2007; Lallo et al., 2008). The radon RMB 

background estimate generally sits higher on the H2 data during the summer 
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months, which could be reflective of the larger flux of atmospheric H2 into soil 

during the summer (e.g. Bartyzel et al., 2013). 

 

Figure 3.21. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) H2 time series and background 
estimates using radon, REBS, NAME, and MET methods.  

 

Figure 3.22. Mean monthly difference from the radon background for REBS (blue), 
MET (purple), and NAME (green) derived backgrounds.  

In contrast to the other species examined in this chapter, the difference 

between the NAME method and the radon method does not vary around the zero 

line but instead has a significant positive offset of ~10-15 ppb, i.e., the NAME 

estimate is consistently higher than the radon estimate (Figure 3.21a). For the 

NAME monthly background estimates, the standard deviation varies between 3.31 

and 8.54 ppb. The offset between the NAME and radon background estimates may 
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be due to the NAME background estimate being produced with MHD H2 

observations, not WAO. The main sink of H2 is soil deposition, accounting for 

around 75% of the total sinks (Ehhalt and Rohrer, 2009), the background air at 

MHD has spent a lot of time over the open ocean, and is therefore less affected by 

the H2 soil sink; whereas WAO is measuring a maritime background which is 

surrounded by land masses (i.e. the UK and Europe). Therefore, it is much more 

probable that the air masses observed at WAO have experienced more sink 

activity. Another possible cause of the higher NAME background estimate for H2 is 

that ‘tropical maritime’ North Atlantic air masses (below 40°S) are associated with 

higher H2 mole fractions (Simmonds et al., 2000; Forster et al., 2012). It is likely 

that MHD experiences these air masses during their background periods, whereas 

the WAO RMB air is missing this southerly component due to its location on the 

east of the UK land mass. Looking at the monthly NAME composite footprints 

(refer to section 3.3.1.3), there is only one month (July 2019) over the 3-years in 

which there is a significant contribution from < 45°N, without the air mass passing 

over land, to the air masses observed at WAO used in the radon RMB calculation 

method (Figure 3.23). For this month, the NAME and radon background estimates 

are closer than during the surrounding months (Figure 3.21a). Finally, even though 

H2 at WAO and MHD are reported to the same scale, the H2 mole fraction is known 

to drift in calibration standards. Thus to be more conclusive a scale 

intercomparison between WAO and MHD would need to be performed.  
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Figure 3.23. NAME 30-day composite footprint for air masses corresponding to 
data points used in the radon background method estimate for July 2019. 

In the case of H2, the MHD NAME derived background is not suitable for use 

as a background at WAO. However, the latitudinal gradient of H2 in the northern 

hemisphere (Figure 3.24; Ehhalt and Rohrer (2009)) also means that air masses 

that arrive at WAO which have experienced rapid latitudinal transport may not be 

representative for the station’s latitude. The removal of air masses which have 

been transported from other latitudes before the calculation of the radon derived 

background for species such as H2 should be further investigated in future work 

but is beyond the scope of this chapter. 
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Figure 3.24. Average latitudinal distribution of the H2 mixing ratio from 1994-
2003 (± SD) (Ehhalt and Rohrer, 2009). 

3.4.2.4 CH4  

The method comparison of CH4 backgrounds calculated using radon, REBS, NAME, 

and the MET methods are displayed in Figure 3.25. Over the entire time period, the 

average absolute difference between the radon background and REBS is 10.68 ± 

4.62 ppb, for the NAME background the average absolute difference is 3.17 ± 2.68 

ppb. The average of the absolute difference from the radon background is 6.21 ± 

4.06 ppb for the MET method.   

In general, the NAME-Rn difference is centred around zero whereas there is 

a positive offset in the REBS-Rn and MET-Rn difference i.e., the REBS and MET 

backgrounds are consistently higher than the Rn background (Figure 3.25a). As 

discussed with the other species, the REBS background can be adjusted to sit 

higher or lower on the CH4 observations by tweaking the input values used in the 

function; however, if REBS were used as the sole method for background 

estimation there would be no other methods for comparison to know whether this 

resultant background values need adjusting. 
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Figure 3.25. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) CH4 time series and background 
estimates using radon, REBS, NAME, and MET methods.  

Although the NAME-Rn difference is centred around zero, CH4 is not 

reported to the same scale at MHD and WAO. MHD report CH4 to the TU-1986 

scale, whereas it is reported on the WMO-X2004a scale at WAO. The TU-1986 

values can be converted to WMO-X2004A scale by multiplication of a factor of 

1.0001 (Prinn et al., 2018). When this conversion factor is applied to the NAME 

background estimate the average absolute difference from the radon background 

only decreases by 0.004 ppb and the average difference increases from 0.02 ppb to 

0.22 ppb and is still centred around zero. The standard deviation given on the 

monthly MHD NAME background estimates vary between 4.55 and 6.87 ppb, 

which is larger than the average absolute difference between the NAME and radon 

estimates.  

There are two months in which the difference from the radon background is 

similar for all three other methods but different from the radon estimate: June 

2018 and February 2020. In June 2018 the radon estimate is lower than the other 

three methods, whereas in February 2020 the other three methods are all lower 

than the radon background estimate. The estimate for February 2020 is flagged for 

the radon method, indicating that there is potential terrestrial influence on the 

radon background estimate, therefore it is likely that the air masses used to 
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calculate the radon background had been in recent contact with CH4 sources thus 

the higher background result. This can be seen in the NAME composite footprint 

corresponding to the observations retained after step 1 to calculate the February 

2020 radon background estimate Figure 3.26. 

 

 

Figure 3.26. NAME 30-day composite footprint for air masses corresponding to 
data points used in the radon RMB method estimate for February 2020. 

The RMB methodology assumes that when an air mass has not been in 

recent contact with the land surface that it has not been in contact with 

anthropogenic CH4 sources, however, this is not always the case. One potential 

source of methane emissions is leakage from offshore oil or gas production in the 

North Sea (Riddick et al., 2019); this source would not be filtered out by the radon 

background methodology as air mass contact with offshore oil and gas platforms 

would not cause an elevation in the radon concentration. However, although there 

are a number of oil and gas platforms in the North Sea (Figure 3.27), which the air 

masses being used to calculate the CH4 background in the radon methodology 

frequently pass over (as shown in the NAME footprints in section 3.3.2.3), there 

does not appear to be an enhancement in the CH4 background estimation using 

radon, in comparison to NAME which is based on MHD which does not experience 

equivalent CH4 sources over the ocean. This is likely due to the radon methodology 

using the lowest 25 – 33% of CH4 values retained when radon is below the 
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thresholds, therefore this filters any positive excursions which would be caused by 

CH4 release from oil and gas platforms. 

 

Figure 3.27. Map of the North Sea showing the locations of all UK offshore oil and 
gas platforms (filled yellow circles) Riddick et al. (2019). The black crosses 
indicate platforms measured by Riddick et al. (2019), so can be ignored in the 
context of this chapter.  

3.4.2.5 CO 

The method comparison of CO backgrounds calculated using the radon, REBS, 

NAME, and MET methods are displayed in Figure 3.28. Over the entire time period, 

the average absolute difference between the radon background and REBS is 3.84 ± 

2.75 ppb, for the NAME background the average absolute difference is 3.19 ± 2.24 

ppb. The average absolute difference from the radon background is 3.39 ± 1.76 

ppb for the MET method.   

Although the absolute average difference from the radon value is similar for 

all three methods, the NAME difference is centred around zero, whereas there is a 

positive offset with the meteorological and REBS methods. In other words, the 

average of the real difference values compared to the radon method for the NAME 

background is -0.42 ± 3.87 ppb, whereas this difference is 3.05 ± 2.29 ppb and 2.60 
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± 3.94 ppb for the MET and REBS methods, respectively. The standard deviation on 

the monthly MHD NAME background estimates varies between 3.23 and 7.07 ppb; 

again this is greater than the average absolute difference between the NAME and 

radon backgrounds.  

 

Figure 3.28. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) CO time series and background 
estimates using radon, REBS, NAME, and MET methods.  

As with H2, CO has a latitudinal gradient (e.g. Piotrowicz et al., 1990). Low 

CO can be attributed to ‘tropical maritime’ air masses from the North Atlantic, 

which would be experienced at MHD. This latitudinal gradient could be seen in the 

consistent offset between the NAME and radon background estimates for H2, but 

this is not the case for CO. However, due to the latitudinal gradient of CO, the 

removal of air masses which have been transported from other latitudes before the 

calculation of the radon derived background for species such as CO should be 

further investigated in future work but is beyond the scope of this chapter. 

The average difference between the REBS and radon methods has a positive 

offset. This could be accounted for by tweaking the variables input into the 

calculation; however, if REBS were to be used alone there would be nothing to 

compare this background against, so one would not know that these variables 

needed to be changed. Ignoring this offset, the variability in the difference between 

the REBS and radon method shows a similar pattern to the difference between the 
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NAME and radon methods (Figure 3.28a); this indicates that the radon method 

may not be correctly picking up the monthly variability in the CO background. The 

MET method also displays an offset from the radon method, with the MET 

background being higher than that estimated using radon. As the MET method is 

supposedly also filtering out terrestrial influence through use of wind speed and 

wind direction, it would be expected that these two backgrounds should be more 

similar. The difference in the MET and radon methods here could be due to the 

effects of local circulation, such as sea breeze effects, not being filtered for in the 

MET method. 

3.4.2.6 N2O  

The method comparison of the N2O backgrounds calculated using radon, REBS, 

NAME, and the MET methods are displayed in Figure 3.29. Over the entire time 

period, the average absolute difference between the radon background and REBS 

is 0.31 ± 0.12 ppb, for the NAME background the average absolute difference is 

0.37 ± 0.09 ppb. The average absolute difference from the radon background is 

0.25 ± 0.22 ppb for the MET method.   

 

Figure 3.29. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the named method. Shaded areas indicate months 
when the radon methodology was flagged. (b) N2O time series and background 
estimates using radon, REBS, NAME, and MET methods.  
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There is a positive offset in the difference of the radon method with all 

three other methodologies. As with the other species the difference from the REBS 

estimate is due to the input variables used in the function. Although these input 

variables were tested through trying a variation of values, the subjective nature of 

this statistical method has a large effect on the output. The difference between the 

REBS and radon methods for N2O is highly variable; additionally, this difference is 

not consistent with the difference seen between the radon and the other two 

methods. 

 The consistent positive offset in the difference between the radon and 

NAME methods could be partially explained by the scale differences, at WAO N2O is 

reported on the WMO X2006A scale, whereas the MHD N2O measurements are 

reported in the SIO-16 scale. SIO-16 scale values can be converted to WMO X2006A 

via multiplication by a factor of 0.9983 (Prinn et al., 2018). When this conversion 

factor is applied, the average absolute difference between the NAME and 222Rn 

background estimates is reduced from 0.37 ± 0.09 ppb to 0.19 ppb ± 0.09 ppb 

(Figure 3.30). However, the offset of the difference changes from a positive to a 

negative offset i.e., the average of the difference from the radon background before 

the scale correction is applied is 0.37 ± 0.09 ppb, which changes to -0.19 ± 0.09 ppb 

after the correction. The standard deviation given on the monthly MHD NAME 

background estimate varies between 0.0819 and 0.138 ppb. 

After the scale correction to allow for a more direct comparison between 

the MHD NAME modelled background and the WAO 222Rn RMB, the lower values 

observed in the NAME background could be due to the latitudinal gradient of N2O. 

N2O displays a strong latitudinal gradient due to the disproportionately higher 

emissions in the Northern Hemisphere (Figure 3.31) (Jiang et al., 2007). As MHD 

has a Southerly component to its background it could be observing air masses with 

lower N2O from these lower latitudes, whereas the WAO RMB air is missing this 

southerly component due to its location on the east of the UK land mass. 
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Figure 3.30. (a) Difference from radon background estimate, where radon 
estimate is subtracted from the NAME method. Shaded areas indicate months 
when the radon methodology was flagged. (b) N2O time series and background 
estimates using radon, NAME on the SIO-16 scale used at MHD, and NAME 
converted to the WMO X2006A scale to be comparable to WAO.  

 

 

Figure 3.31. N2O variation with latitude in 2000 (solid line), 2001 (dotted line), 
and 2002 (dashed line) (Jiang et al., 2007). 

Another possible reason for the higher N2O background for the 222Rn 

method than the MHD NAME method is a greater influence from European and UK 

land masses on the 222Rn method background values. The two months with the 

best agreement between the Rn and NAME methods are October 2018 and January 
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2019, both have a scale adjusted NAME-Rn difference of -0.03 ppb. The two non-

flagged months with the largest scale adjusted NAME-Rn difference are October 

2019 and November 2019, with a difference of -0.43 and -0.93 ppb, respectively. 

The NAME footprints for the air masses used in October 2018 and January 2019 

222Rn RMB estimates show almost no interaction with the UK and Europe (Figure 

3.32(a) and (B)). Conversely, for the months with the largest difference between 

the 222Rn and NAME backgrounds, October 2019 and November 2019, the air 

masses used in the calculation of the 222Rn RMB display a greater degree of 

interaction with the UK and European land masses (Figure 3.32(c) and (d)). This 

indicates that the higher N2O background for the 222Rn RMB than the MHD NAME 

method may be due to this minor influence from UK and European N2O emissions.  

 

Figure 3.32. NAME 30-day composite footprint for air masses corresponding to 
data points used in the radon RMB method estimate for (a) October 2018, (b) 
January 2019, (c) October 2019, and (d) November 2019. 

3.4.2.7 Method comparison summary 

A summary of the average difference and average of the absolute 

differences of each method from the radon derived background for each species is 

shown in Table 3.4. 
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Generally, with the exception of H2 and N2O, the radon derived background 

is often most similar to the NAME derived background for all species, and most 

different from the REBS background method results. For H2 and N2O, the NAME 

background is the most different from the radon derived background, as discussed 

in sections 3.4.2.3 and 3.4.2.6, respectively.   

Table 3.5. Average difference ((x-Rn) ± 1σ) and average of the absolute difference 
(|(x-Rn)| ± 1σ) from the radon derived background estimate for each species 

 
Background method difference from radon 

REBS NAME STILT MET 

  x - Rn |x-Rn| x - Rn |x-Rn| x - Rn |x-Rn| x - Rn |x-Rn| 

CO2 

(ppm) 
-1.29 
±2.57 

2.02 
±2.05 

0.28 
±0.98  

0.77 
±0.66 

0.32 
±1.37  

1.08 
±0.90 

0.09 
±1.47  

0.98 
±1.09 

O2 (per 
meg) 

9.73 
±15.77 

13.86 
±12.30 

        1.84 
±8.95 

6.48 
±6.44 

H2 

(ppb) 
-5.75 
±5.17 

6.27 
±4.53 

11.95 
±4.24  

11.95 
±4.24 

    -2.68 
±4.87 

4.21 
±3.63 

CH4 

(ppb) 
10.51 
±5.01 

10.68 
±4.62 

0.02 ± 
4.14  

3.17 
±2.68 

    5.71 
±4.75  

6.21 
±4.06 

CO 
(ppb) 

2.60 
±3.94 

3.84 
±2.75 

-0.42 
±3.87  

3.19  
2.24 

    3.05 
±2.29  

3.39 
±1.75 

N2O 
(ppb) 

0.31    
±0.12 

0.31 
±0.12 

0.37 
±0.09  

0.37 ± 
0.09 

    0.25 
±0.22  

0.27 
±0.20 

3.5 Conclusions 

The use of radon measurements concurrently with measurements of other 

atmospheric gas species allows for the calculation of an RMB. Overall, the radon 

methodology for calculation of RMB shows good agreement with existing methods, 

with some variability depending on the processes involved in a given species 

source and sink mechanisms.  

The radon method presented here is often based on a very small number of 

data points each month. Therefore even a small gap in the time series means that 

there is no estimate for that given month; this is reliant on both radon and the 

species for which the background is being calculated not having gaps in the time 

series. This is also the case for the MET method, which explains the large gaps in 

this method’s background estimates. The calculation of these backgrounds using 
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radon is also dependent on the measurement site experiencing ‘background’ air 

masses during each month of the year; but during months in which fewer of these 

air masses were seen, the thresholds and flagging used in the methodology 

appropriately filtered air masses and the difference from other methods during 

these months was no worse than during non-flagged months. The NAME and STILT 

and MET methods also require the station to have experienced background air 

masses. Additionally, the use of radon is less computationally intensive than 

running the NAME or STILT methods, and can also be computed in ‘real-time’. 

REBS is also a quick and easy method for background calculation that does 

not require any additional observations, but it is based purely on statistics, so it 

includes some localised emissions in the background. The input parameters are 

also very subjective, and as seen in my results, changing the parameters for the 

different species would bring the REBS estimate closer to the other method 

estimates; however, if REBS were being used on its own, without comparison, the 

user would not know that these parameters need tweaking.  

The difference from the NAME modelled backgrounds was generally small 

for all species, which suggests the radon could be used to validate the NAME 

modelled background results. Additionally, the location of MHD (where the NAME 

backgrounds were calculated for), means it receives predominantly maritime air 

masses from the North Atlantic Ocean with very little, if any, terrestrial or 

pollution sources or sinks; thus, the agreement with the radon background means 

the radon method is appropriately removing air masses with recent terrestrial 

influence.  

3.5.1 Future work 

This chapter demonstrates the use of radon for calculation of an RMB, but there is 

further research that could be conducted which falls outside the scope of the work 

I have presented here: 

• This analysis should be repeated for non-coastal sites, such as mid-

continental and mountain sites, which will present different challenges. 

• The use of air quality parameters to screen out any maritime emissions 

should be investigated as I am currently assuming that there are no 

emissions over the ocean. Using the lowest percentage of mole fraction 
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values may account for this, but the use of air quality products could 

confirm this. 

• The methodology used to calculate the radon RMB can be further developed 

to reduce the subjectivity used in the selection of some of the thresholds 

used. 

• Analysis of the effects of species which have a strong latitudinal gradient on 

the calculation of an RMB using radon.  

• For species with strong latitudinal gradients, investigation into the need for  

removal of air masses which have been transported from other latitudes 

before the calculation of the RMB for a site.  
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4.1 Introduction 

Anthropogenic emissions of CO2 are the most important contributor to global 

climate change (IPCC, 2021a). Therefore, a quantitative understanding of the 

carbon cycle, and the source and sink processes which govern it, are crucial for 

assessing the radiative forcing effects of ongoing anthropogenic emissions. A 

number of supporting measurements that provide additional information on 

sources and sinks are used to disentangle carbon cycle processes, so called ‘tracer’ 

methods. The stable isotopic composition of atmospheric CO2 is one such tracer 

method.  

Stable isotopes are non-radioactive forms of an atom which differ only in 

their number of neutrons, and therefore atomic mass. These mass differences 

cause fractionation of the molecules during different formation, transport, and 

removal processes, where the abundance of one isotope becomes enriched relative 

to another (Affek and Yakir, 2014). Therefore, the measurement of the isotopic 

composition of CO2 can be used as a tool to distinguish between anthropogenic and 

biospheric fluxes (e.g. Pataki et al., 2003a; Zhou et al., 2005; Laskar et al., 2016) 

and can provide information about the size of carbon fluxes between the 

atmosphere, terrestrial biosphere, and oceans.  

Table 4.1. Natural abundances of the distinct, stable CO2 isotopologues (Eiler and 
Schauble, 2004) 

Mass Isotopologue Abundance 
fraction of CO2  

44 16O12C16O 98.4 % 
45 16O13C16O 1.1 % 

17O12C16O 760 ppm 
46 18O12C16O 0.41 % 

17O13C16O 8.5 ppm 
17O12C17O 150 ppb 

47 18O13C16O 46 ppm 
18O12C17O 1.6 ppm 
17O13C17O 1.6 ppb 

48 18O12C18O 4.3 ppm 
17O13C18O  18 ppb 

49 18O13C18O 48 ppb 
 

Carbon has two naturally occurring stable isotopes, 12C and 13C, and oxygen 

has three, 16O, 17O, and 18O; with the heavier isotopes being rarer (1.1 % for 13C, 0.2 
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% for 18O, and 0.04 % for 17O; Affek and Yakir (2014)). Considering this, there are 

eighteen possible isotopologues of CO2, with only 12 of these being distinct due to 

symmetry (Table 4.1). Each of these 12 isotopologues has its own distinct 

thermodynamic and kinetic properties which cause them to fractionate from one 

another during natural processes (Eiler and Schauble, 2004); these properties 

mean that measurement of the different isotopologues can be used to investigate 

these processes. 

The 13C/12C isotope ratio of atmospheric CO2 (denoted δ13C) has widely 

been utilised as a tracer for partitioning the sources and sinks of CO2 between the 

ocean, terrestrial biosphere and fossil fuels (e.g. Ciais et al., 1995; Battle et al., 

2000; Miller et al., 2003b; Pataki et al., 2003b; Ciais et al., 2005; Keeling et al., 

2017; Graven et al., 2020). Photosynthesis and respiration impart distinct isotopic 

signatures to the atmosphere: during photosynthesis, terrestrial plants 

preferentially assimilate 12C-CO2, thereby enriching the δ13C content of the CO2 

remaining in the atmosphere (Flanagan and Ehleringer, 1998). The reverse is the 

case for respiration which depletes the δ13C content of the atmosphere. Fossil fuels 

originate from plant materials, therefore the preferential uptake of 12C-CO2 during 

photosynthesis means that they are depleted in 13C-CO2 relative to the atmosphere. 

Fossil fuel emissions therefore dilute the atmospheric δ13C value (Keeling et al., 

2017). Moreover, net uptake of CO2 from the atmosphere into the ocean leaves the 

atmospheric δ13C essentially unchanged. These distinct signatures can thus be 

used to constrain global carbon sources and sinks. The use of δ13C does have 

limitations as a tracer for identifying sources, for example, both petroleum 

combustion and plant respiration have similar isotopic source signatures. Natural 

gas also has a varying source signature according to the supply location which can 

introduce errors into estimates (Lopez et al., 2013), thus additional constraints are 

required.   

In addition to the carbon isotopes of CO2, the naturally occurring stable 

isotopes of oxygen can also be used as useful carbon cycle tracers. As with carbon, 

the relative isotopic composition of oxygen-containing molecules on Earth is 

affected by processes such as diffusion, evaporation, and condensation. These 

processes typically depend on the mass of the molecules and therefore result in 

mass-dependent fractionation of the oxygen isotopes.  
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 The ratio of 18O/16O (denoted δ18O) of CO2 has been widely used to 

estimate gross carbon fluxes between the atmosphere and the terrestrial 

biosphere (e.g. Yakir and Wang, 1996; Ciais et al., 1997). As the δ18O of 

atmospheric CO2 is controlled largely by isotopic exchange with water in the leaves 

of plants, it is an important tool to estimate global primary production (GPP; the 

gross CO2 uptake of plants from photosynthesis)(Francey and Tans, 1987). During 

CO2 exchange with leaf, soil, and ocean water, the 18O isotopes of CO2 are 

exchanged with those of water. Stomatal water in plant leaves is highly enriched in 

18O relative to soil water, due to mass-dependent fractionation during 

evapotranspiration, which imparts contrasting δ18O signatures in CO2 released into 

the atmosphere after CO2-H2O exchange (e.g. Cuntz et al., 2003; Barthel et al., 

2014). Furthermore, the equilibration and isotope exchange of CO2 with water in 

stomata is catalysed by the presence of carbonic anhydrase, which extensively 

enriches the CO2 released from plants with 18O from leaf-water. This isotope 

exchange process can therefore be directly related to gross primary production as 

first suggested by Farquhar et al. (1993). The difficulty with using 18O-CO2 to 

determine GPP is the requirement for a detailed knowledge of δ18O values for 

numerous water reservoirs, which can be highly variable due to the number of 

processes involved in the hydrological cycle. The addition of 17O-CO2 

measurements can remove this requirement (Hoag et al., 2005). Due to mass-

dependent fractionation, variations in 17O are strongly correlated to variations in 

18O, with any deviation from this correlation (i.e. mass independent fractionation) 

being expressed as the Δ17O signature (referred to as the ‘triple oxygen isotope’, 

‘CO2 excess’, or ‘O2 anomaly’) (see section 4.3.1 for the formal definition). 

The processes which affect the isotopic composition of CO2 usually depend 

on the mass of the molecules and therefore result in mass-dependent fractionation 

of the oxygen isotopes. An exception, however, is that compared to tropospheric 

CO2, stratospheric CO2 is anomalously enriched in 17O and 18O (e.g. Thiemens et al., 

1991; La mmerzahl et al., 2002; Yeung et al., 2009). This is linked to mass-

independent fractionation of CO2 during the formation of O3, which imparts a 

positive Δ17O signature (Yung et al., 1991). This enriched stratospheric CO2 is 

transported into the upper troposphere (Laskar et al., 2019), where it mixes and 

comes into contact with water reservoirs in vegetation, soil, and oceans. When CO2 

dissolves in liquid water, there is a mass-dependent exchange of oxygen atoms, 
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meaning that the Δ17O signature of the CO2 released back into the atmosphere is 

reset to around 0 ‰ (Hoag et al., 2005). As a consequence, variations in the 

tropospheric Δ17O signature strongly depend on the magnitude of CO2 exchange 

with the leaf water reservoir and can therefore be directly related to biospheric 

activity (Hoag et al., 2005). However, unlike using δ 18O alone, Δ17O does not 

directly depend on the 18O or 17O of soil and leaf water since hydrological cycle 

processes are largely mass dependent (Hoag et al., 2005). Δ17O should therefore be 

a more direct tracer for GPP than variations in 18O/16O alone. A schematic 

summary of the processes affecting the Δ17O signature of atmospheric CO2 is 

displayed in Figure 4.1. 

 

Figure 4.1. Schematic summary of the processes affecting the Δ17O signature of 
atmospheric CO2 as reported by Koren et al. (2019). The CO2 mass fluxes (F) are 
global integrated values averaged over 2012-2013 and rounded to integers. CO2 
mass fluxes that increase that tend to increase the tropospheric CO2  mass are 
expressed as positive numbers. FAS/FSA is atmosphere (troposphere)-stratosphere 
exchange; FAL/FLA is atmosphere-leaf exchange; FASI/SIA is atmosphere-soil 
exchange; FOA is ocean-atmosphere exchange; and Fbb is flux from biomass burning. 
Figure taken from Koren et al. (2019). 

To date, there have been very few published concurrent measurements of 

δ13C, δ18O, and δ17O, and the subsequent calculation of Δ17O in the troposphere. 

Barkan and Luz (2012) presented the first high-precision data on the Δ17O 

composition of tropospheric CO2 from a limited set of flask samples in Spring 2012 

in Jerusalem, Israel.  Next, Thiemens et al. (2014) presented a decade-long time 

series of Δ17O values from flask samples in La Jolla, California. These 

measurements identified a stratospheric component in tropospheric CO2, and 
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discussed the role of El Nin o Southern Oscillation indices in tropospheric 

excursions. They also noted the need for extended global measurements of δ17O 

and δ18O for analysis of Δ17O in order to further the understanding of these and 

other processes which influence the carbon cycle. Liang and Mahata (2015) 

presented the Δ17O in the troposphere from a total of 81 near-surface samples 

taken over one year in Taipei, Tiawan, demonstrating that Δ17O in CO2 is 

observable at sea level. More recently, Hofmann et al. (2017) presented high-

precision Δ17O values in tropospheric CO2 from Go ttingen, Germany from air 

samples taken over the course of two years; demonstrating that observations of 

Δ17O captures the seasonal variability in GPP.  Koren et al. (2019) presented the 

first global 3D Δ17O model, which was used to predict the global signature, 

seasonal cycle, and vertical and latitudinal gradients. They also suggested that 

observational time series of Δ17O could help to further increase understanding of 

the global Δ17O budget of tropospheric CO2.  

One of the most challenging aspects of using Δ17O to better understand GPP 

is the extremely high measurement precision and accuracy that is needed for both 

17O and 18O to be able to define spatial gradients and seasonal cycles of Δ17O. For 

example,  Hofmann et al. (2017) states that a measurement precision of ± 0.01 ‰ 

(10 per meg) or better would be required to capture seasonal variations and for 

Δ17O to be useful as a tracer for GPP. Studies of Δ17O in CO2 have in the past been 

limited by the precision of the measurements and limitations in technology. 

Historically, high-precision measurements of stable isotopes have been done using 

isotope ratio mass spectrometry (IRMS), which requires the extraction of CO2 from 

an air sample before analysis. This extraction process is not only time-consuming 

but is also a major contributor of scale differences between labs. Further, due to 

16O13C16O and 17O12C16O having the same atomic mass, IRMS techniques are 

sensitive to isobaric interference therefore, determination of δ17O in a sample is 

extremely complex and limited to only a few laboratories (see Adnew et al., 2019). 

In recent years there have been a number of developments in optical spectroscopy 

measurement techniques for Δ17O, increasing the precision of measurements (e.g. 

Barkan and Luz, 2012; Mahata et al., 2016; Adnew et al., 2019). Furthermore, high-

precision measurements of Δ17O in whole air samples have been made possible 

with the development of new analysers which use optical spectroscopy, with 

precision close to, or exceeding, IRMS measurements (McManus et al., 2015; 
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Stoltmann et al., 2017); this also means that air can be measured continuously, 

rather than from discrete samples. As well as removing the need for extraction of 

CO2 from an air sample, optical spectroscopy is also free of isobaric interferences 

as the individual isotopologues are directly measured; it is therefore possible to 

directly measure δ17O in addition to δ13C and δ18O.   

In this chapter, I present concurrent measurements of δ13C, δ17O and Δ17O 

using new state-of-the-art technology from Aerodyne Research Inc., a tunable 

infrared laser direct adsorption spectroscopy (TILDAS) CO2 isotopologue analyser, 

collecting in-situ continuous data from the Weybourne Atmospheric Observatory 

(WAO; see Chapter 1.4 for a WAO site description).  These data are calibrated using 

two different methodologies, and the resulting values are compared. The 

repeatability and compatibility are then investigated. These analyses are then 

contextualised with respect to the observed seasonality in the observations. 

4.2 Aerodyne TILDAS dual-laser trace gas analyser  

Measurements of δ13C, δ17O, and δ18O, at the Weybourne Atmospheric Observatory 

(WAO) are performed using a tunable infrared laser direct adsorption 

spectroscopy (TILDAS) dual-laser CO2 analyser, designed and manufactured by 

Aerodyne Research, Inc. (ARL, Billerica, MA, USA) (McManus et al., 2015). The 

TILDAS analyser has been running at WAO since September 2021.  

The TILDAS analyser measures the individual absorption lines of 12C16O16O, 

13C16O16O, 12C16O18O and 12C16O17O, which are referred to as 626, 636, 628, and 

627, respectively, following the HITRAN database notation (Gordon et al., 2017).  

Two mid-infrared interband-cascade lasers (Nanoplus Nanosystems and 

Technologies, GmbH) are used, which operate at wavelengths of 2310 cm-1 

targeted at 626, 628 and 636, and 2349 cm-1 targeted at 627 (and 626) (Hare et al., 

2022). The total path length of the lasers in the optical cell is 36 m, which is 

depicted in Figure 4.2. To avoid absorption by CO2 other than from gas in the 

optical cell, the optical cell and detectors are contained within a casing that is 

continually flushed with nitrogen (N2) at a flow rate of several litres per minute. 

The lasers and data acquisition of the absorption spectra are controlled by 

‘TDLWintel’ software, (McManus et al., 2015), which produces isotopologue mole 
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fractions at a frequency of 1 Hz.  An extended description of the operating 

principles can be found in McManus et al. (2015).    

 

Figure 4.2. Diagram of the optical layout of the Aerodyne Research, Inc. TILDAS 
instrument. The main sample beam path is coloured in red, which passes through a 
36 m absorption cell. The reference beam path, which splits into two, is shown in 
blue. One reference beam path contains a short reference gas cell and the other 
contains an etalon that may be flipped into the beam for measurement of laser 
tuning rates. Figure is from McManus et al. (2015) and Steur et al. (2021). 

4.2.1 Gas handling setup at WAO 

The gas handling setup of the TILDAS analyser at WAO is shown in Figure 4.3, and 

is set up to measure continuous sample air flow. Calibration is performed with four 

calibration standards (see section 4.2.4), and a target tank (TT) is run regularly to 

quality check the performance of the analyser. A reference tank (RT) is also run, 

before and after every sample measurement, which reduces variations due to 

analyser baseline drift.  

 The sample air is drawn in from a mast 10 m above ground level (20 m 

a.s.l.) at a flow rate of 150 ml/min (controlled by a mass flow controller; ‘MFC’ in 

Figure 2) and first passes through a switchable chiller at ~-30°C to dry the air, 

before entering a 50 ml intermediate volume (V2; Figure 4.3). The intermediate 

volume (V2) is filled with sample air until it reaches a pressure of 270 torr. At that 
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point the inlet volume is isolated via the automated actuated valves before being 

injected into the sample cell (by opening V18 and V21; Figure 4.3). Prior to 

injection, the sample cell is fully evacuated to 0 torr; the sample is then expanded 

into the optical cell to a pressure of 40 torr. V21 and V22 are closed while the 

sample is analysed. While sample air is being analysed in the sample cell, the inlet 

volume is simultaneously filled with gas from the RT (by opening V16 and V10). 

After measuring the sample air for 2 minutes the TILDAS cell is evacuated to 0 torr 

again, and the RT gas is then injected into the TILDAS cell for measurement while 

the inlet volume is again filled with sample air. Measurements continually 

alternate between RT and sample every 2 minutes; this switching sequence is 

analogous to that used in dual-inlet IRMS measurements. Similarly, when 

measuring the calibration standards, these are also alternated every 2 minutes 

with measurement of the RT. The 2-minute switching time was chosen as the 

result of an Allan variance test on the raw 1 second data. As the calibration 

standards and RT share tubing into the inlet volume, this is evacuated (by opening 

V14) before switching between gas measurements to avoid contamination from 

any gas remaining in this dead volume (Figure 4.3). The temperature of the TILDAS 

optics box is regulated using an Oasis chiller, which circulates fluid at a constant 

temperature of 296 K around the lasers.  
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Figure 4.3. Gas handling diagram for the Aerodyne TILDAS at Weybourne 
Atmospheric Observatory. Custom scripts have been written for the TDLWintel 
software to achieve the routine and repeated analyses of sample air, reference tank 
(RT), calibration standards (Cal1 - Cal4) and a quality control target tank (TT) as 
described in the text.    

4.3 Isotope notation  

Of the 12 distinct isotopologues of CO2 and assuming the substitution of each 

isotope at each position in the molecule follows its bulk statistical abundance (i.e. 

no clumping, where the CO2 molecule contains two minor isotopes), only 4 

independent quantities are required to define the total amount and full isotopic 

composition of CO2 (Griffith, 2018). These quantities are the total amount of CO2 

and the 13C/12C, 17O/16O, and 18O/16O isotopic ratios.  

Since routine measurements of absolute isotopic concentrations are very 

difficult, results are obtained from relative measurements and expressed as the 

ratio, r, of the rare to the abundant isotope (Eqs. (4.1), (4.2), and (4.3)) (Griffith, 

2018).  

 13𝑟 =  
 𝑛(13𝐶)

 𝑛(12𝐶)
   (4.1) 

 17𝑟 =  
 𝑛(17𝑂)

 𝑛(16𝑂)
   (4.2) 
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 18𝑟 =  
 𝑛(18𝑂)

 𝑛(16𝑂)
   (4.3) 

where n() is the number of moles of each isotope in a sample. In addition, 

isotope ratios are typically referred to using delta notation which expresses the 

variation of an isotope ratio of an element, relative to a standard on the Vienna Pee 

Dee Belemnite scale (VPDB-CO2) that is assumed to have a constant and known 

isotope ratio. This delta notation reduces variations due to analyser baseline drift. 

For the three isotopologues discussed in this chapter, the delta notation is defined 

as follows and expressed in ‘per mil’ (‰) units (Griffith, 2018): 

𝛿13𝐶 =
( 13𝑟 )𝑠𝑎𝑚𝑝𝑙𝑒− ( 13𝑟 )𝑟𝑒𝑓

( 13𝑟 )𝑟𝑒𝑓
 ∙ 1000 ‰ (4.4) 

𝛿17𝑂 =  
( 17𝑟 )𝑠𝑎𝑚𝑝𝑙𝑒− ( 17𝑟 )𝑟𝑒𝑓

( 17𝑟 )𝑟𝑒𝑓
 ∙ 1000 ‰  (4.5) 

𝛿18𝑂 =  
( 18𝑟 )𝑠𝑎𝑚𝑝𝑙𝑒− ( 18𝑟 )𝑟𝑒𝑓

( 18𝑟 )𝑟𝑒𝑓
 ∙ 1000 ‰  (4.6) 

4.3.1 Δ17O notation 

The isotopic composition of CO2 is altered by many processes which depend upon 

the mass of the molecules and therefore result in mass-dependent fractionation 

(Brenninkmeijer et al., 2003). δ17O and δ18O in CO2 thus typically follow the mass 

dependent relationship as defined by Eq. (4.7) from a three oxygen δ17O/ δ18O 

isotope plot.  

𝛿17𝑂 =  𝜆𝑅𝐿  × 𝛿18𝑂 (4.7) 

which is referred to as the ‘reference line’, and where λRL is the slope of the 

reference line.  If we are interested in pure mass-dependent fractionation, we 

choose, λRL is 0.5, representing the fact that the mass difference between isotopes 

17O and 16O is half of the mass difference between the isotopes 18O and 16O. Δ17O is 

defined as any deviation from this mass dependent fractionation reference line, as 

defined by Eq. (4.8), using the logarithmic definition and shown schematically in 

Figure 4.4 (Miller, 2002; Young et al., 2002). 

∆17𝑂 = ln(𝛿17𝑂 + 1) −  𝜆𝑅𝐿  × ln (𝛿18𝑂 + 1) (4.8) 

Δ17O data are normally expressed in per mil (‰), or per meg (0.001 ‰) 

units, depending on the size of the Δ17O signature, and λRL is the slope of the 

reference line (Eq (4.7)).  As well as this ‘logarithmic definition’ of Δ17O, there is 

also an ‘exponential definition’ (e.g., Assonov and Brenninkmeijer, 2005) and a 
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‘linear definition’ (e.g. Hoag et al., 2005), which you can convert between (Koren et 

al., 2019). Each form of this definition is suited to a specific research problem; in 

most older studies the linear definition was commonly used,  whereas more recent 

studies of Δ17O in CO2 use the logarithmic definition (e.g. Hofmann et al., 2017; 

Koren et al., 2019).  

 

Figure 4.4. Schematic representation of an oxygen three isotope plot. 

In addition to the different forms of Eq. (4.8) used to define Δ17O, there are 

also a number of different values used for  λRL in the published literature, which are 

representative of different fractionation processes and therefore chosen based on 

the aim of the research. In essence, mass-independent fractionation of CO2 occurs 

from photochemical reactions in the stratosphere involving O3 and O(1D). In the 

troposphere, this mass-independent fractionation of oxygen atoms in CO2 is 

mostly, but not entirely, cancelled out by mass-dependent exchange of oxygen 

between CO2 and H2O in leaves. In some applications, λRL = 0.528 has been used, 

which is equal to the both the isotopic composition of precipitation water (Landais 

et al., 2006) and the VSMOW-SLAP reference line which is linked to two 

international water standards (Barkan and Luz, 2012); λRL = 0.525 has also been 

used, based on the isotopic composition of rocks and minerals (e.g. Hofmann and 

Pack, 2010; Hofmann et al., 2012); λRL = 0.5305 is defined from the equilibrium end 

member for isotopic fractionation at high temperatures (e.g. Pack and Herwartz, 

2014; Gehler et al., 2016); and λRL = 0.516 is representative of the isotopic 

composition of tropospheric CO2 entering the stratosphere (e.g. Boering et al., 

2004; Liang and Mahata, 2015). In this chapter, λRL = 0.5229 is used, based on the 
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CO2-water equilibrium fractionation factor (e.g. Barkan and Luz, 2012; Hofmann et 

al., 2017; Koren et al., 2019), and has been widely used in the published literature 

(e.g. Hofmann et al., 2017; Koren et al., 2019). It should be noted that although 

there is no agreed value for the reference line, the choice is somewhat arbitrary 

since Δ17O is calculated from δ17O and δ18O measurements and is not itself a 

measured quantity (Pack and Herwartz, 2014). 

4.4 Calibration  

4.4.1 Calibration methods 

There are two methods which can be used for calibration of an isotopologue 

analyser, in brief these are: (1) calculate the delta values and then calibrate 

(isotopologue ratio method (RM); see section 4.2.4.1) or (2) calibrate the 

individual isotopologue mole fractions and then calculate the isotopologue ratios 

(isotopologue abundance method (AM); see section 4.2.4.2).  

The RM is similar to the methods developed for the calibration of 

traditional IRMS based analysers. This method uses calibration standards which 

cover a range of delta values and directly determines calibration equations in 

terms of these delta values (Griffith, 2018). However, this method of calibration 

introduces a CO2 mole fraction dependence (CMFD) in the calibration equations 

which needs to be accounted for (Griffith, 2018). The AM is more fundamental for 

optical analysers (such as the TILDAS) as they are measuring the amounts of the 

individual isotopes; therefore, the AM is a natural choice of calibration method for 

such analysers (Griffith, 2018).  Additionally, as each isotopologue is calibrated 

separately the introduced CMFD does not need to be accounted for (Griffith, 2018; 

Steur et al., 2021). In this chapter, the data collected at WAO has been calibrated 

using both methods, which will then be compared. 

For both calibration methods, 4 calibration standards were run on the 

TILDAS. The CO2 mole fraction is defined on the WMO-X2019 scale, the δ13C and 

δ18O values of these standards are defined on the VPDB-CO2 scale (Table 4.2). They 

were assigned at the ICOS Flask and Calibration Laboratory, hosted by the Max 

Planck Institute for Biogeochemistry in Jena. The δ17O value of the calibration 
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standards is unknown but is calculated using the mass dependent fractionation 

relationship with δ18O, where δ17O = 0.528*δ18O (Brand et al., 2010; Griffith, 2018).  

Table 4.2. CO2, δ13C and δ18O assigned values of the four calibration standards 
used for calibration of the TILDAS at WAO.CO2 is reported on the WMO-X2019 and 
the isotopologues areon the VPDB-CO2 scale. Note that the δ17O value of these 
cylinders is calculated from δ17O=0.528*δ17O. 

Cylinder ID CO2 (ppm) δ13C (‰) δ18O (‰) δ17O (‰) 
D251500 372.097 -8.3 -13.59 -7.18 
D251502 400.195 -9.05 -3.04 -1.61 
D251503 418.961 -9.58 -2.18 -1.15 
D477509 499.907 -10.9 -3.04 -1.61 

 

A calibration of the analyser was performed on 21Jun2022 and applied to 

all data presented in this chapter (14Sep2021 to 12Oct2022). The measurement of 

the calibration standards for both the RM and AM follows the same procedure 

outlined in section 3.2.1 for sample measurement. Measurement of the calibration 

standard and RT is alternated every 2 minutes allowing for drift correction of the 

measurement value as in Eqs. (4.4)-(4.6). 

4.4.1.1 Isotopologue ratio method calibration 

In the isotopologue ratio method calibration (RM), isotopologue ratios are 

used to calculate the delta values, defined on the VPDB-CO2 scale by the 4 

calibration standards. This method was originally developed for the calibration of 

measurements made using IRMS analysers. The method outlined here follows that 

of Griffith (2018) and Steur et al. (2021).  

First, the uncalibrated measured delta values (δ*m) are calculated from the 

2-minute calibration standard (r*m) and linearly interpolated 2-minute raw RT (r 

*RT) isotopologue ratios, which corrects for short-term analyser drift:  

δ∗
𝑚 = (

 ∗𝑟𝑚

 ∗𝑟𝑅𝑇
− 1)   (4.9) 

where * denotes the isotopologue being calibrated (i.e., 636, 627, or 628). 

Next, these 2-minute uncalibrated δ*m values are averaged for each calibration 

standard and linearly regressed against the assigned delta values of each standard 

(δ*a) (Table 4.2) and a linear fit is added. As delta values of each isotopologue in 

the RT (δ*RT) on the VPDB-CO2 scale are unknown, these are then determined from 

the y-axis intercept. This can be assumed as if the RT were to be measured against 
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itself then δ*m would be zero (from Eq. (4.9)), thus δ*a would equal the y-axis 

intercept. The δ13C, δ18O, and δ17O sample measurements (δ*sam) are then 

calibrated (δ*cal) based on these δ*RT  values: 

δ∗
𝑐𝑎𝑙 = (1 +  δ∗

𝑅𝑇) ⋅  δ∗
𝑠𝑎𝑚 +  δ∗

𝑅𝑇   (4.10) 

where δ*sam is calculated for each isotope using Eqs. (4.4), (4.5), and (4.6). 

The CO2 mole fraction is then calibrated with a linear calibration curve calculated 

by fitting the assigned CO2 mole fraction of the calibration standards against the 

measured mole fractions and applying this to the raw measured air sample 

measurements.   

As this RM of calibration has historically been used to calibrate mass 

spectrometers, an important consideration for calibration of spectroscopic 

analysers, such as the TILDAS, when using the RM is the concentration dependence 

of the measured isotope ratios (and therefore delta values) on the mole fraction of 

CO2. This CO2 mole fraction dependency (CMFD) must be corrected for as part of 

the calibration procedure (Griffith, 2018). CMFD from ratio calibration methods 

have been published in a number of papers (e.g. Griffith et al., 2012; Wen et al., 

2013; Rella et al., 2015; Pang et al., 2016; Steur et al., 2021).  A non-zero y-axis 

intercept in the relationship between the measured and assigned values of the 

calibration standards is indicative of CMFD(Griffith, 2018). A non-zero intercept 

results in an approximate inverse relationship between the measured δ13C and the 

CO2 mole fraction (Griffith et al., 2012). Even if the concentration dependence is 

small, this can be amplified in Keeling plot-type analyses (Wen et al., 2013).  

In order to correct for this, first Eq. (4.10) is applied to the δ*S values 

calculated from Eq. (4.9) to produce calibrated values for each calibration standard 

measurement for each isotopologue. The residual of each calibration standard 

from the assigned delta value on the VPDB scale (calibrated δ*S – assigned δ*S), 

including a residual of 0 for the RT, are then plotted against the CO2 mole fractions 

assigned for each standard, and a quadratic fit is produced. This equation is then 

subtracted from the calibrated sample from Eq. (4.10) to correct for any CMFD as 

follows: 

δ∗
𝑉𝑃𝐷𝐵 =  δ∗

𝑐𝑎𝑙 − ((𝑑 ∙ [𝐶𝑂2]2) + (𝑒 ∙ [𝐶𝑂2])  + 𝑓)  (4.11) 

where δ*VPDB is the final air sample isotope delta value on the VPDB-CO2 

scale, [CO2] is the calibrated CO2 mole fraction of the air sample, and δ* is the 
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calibrated isotopologue values obtained from Eq. (4.10). Finally, Δ17O is calculated 

from δ17O and δ18O using Eq. (4.8). 

4.4.1.2 Isotopologue abundance method calibration 

In short, the isotopologue abundance method (AM) calibrates each CO2 

isotopologue abundance (y) individually as if they were separate species, and then 

uses these values to calculate the isotope ratios and delta values. The method 

outlined here follows that of Griffith (2018) and Steur et al. (2021).   

First, the isotope ratios of each calibration standard, 13r, 18r and 17r (*r), are 

calculated from the assigned delta values, through inverting Eqs. (4.4), (4.5), and 

(4.6), i.e.: 

 ∗𝑟 = (1 +  δ∗) ∙  ∗𝑟𝑉𝑃𝐷𝐵  (4.12) 

where δ* is the assigned delta value of the calibration gas (Table 4.2) and 

rVPDB is the standard isotope ratio on the VPDB-CO2 reference scale (Table 4.3). 

Table 4.3. Standard isotope ratios for the VPDB-CO2 reference scale (Brand et al., 
2010). 

Element Ratio VPDB-CO2 
C 13r = 13C/12C  0.0111802 
O 18r = 18O/16O 0.00208835 
O 17r = 17O/16O 0.0003931 

 

Next, the ‘assigned’ isotopologue abundances, y, in each of the calibration 

standard and the RT are calculated.  

𝑦626 =  
𝑦𝐶𝑂2

𝑅𝑠𝑢𝑚
  (4.13) 

𝑦636 =  𝑦626 ∙ 13𝑟 (4.14) 

𝑦627 =  2 ∙  𝑦626 ∙ 17𝑟 (4.15) 

𝑦628 =  2 ∙ 𝑦626 ∙ 18𝑟 (4.16) 

where yCO2 is the assigned CO2 mole fraction of the calibration standard 

(Table 4.2), r is the ‘assigned’ isotope ratio calculated from Eq. (4.12), and Rsum  = 

(1 + 13r)·(1 + 17r + 18r)2 (Griffith, 2018). The assigned values of yCO2 in the 

calibration standards are chosen to span the CO2 mole fractions observed in 

sample air, as the method is only valid for samples within this span. As per Table 
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4.2, the calibration standards CO2 mole fraction has a range of 372.097 - 499.907 

ppm. 

The uncalibrated isotopologue abundances measured for each calibration 

standard, y*S, are then calculated relative to the RT, to correct for drift: 

𝑦∗ =  
𝑦∗𝑆

𝑦∗𝑅𝑇
 (4.17) 

where y*S and y*RT are the measured isotopologue abundances in each 

calibration standard and the RT.  

Quadratic calibration curves are then calculated by fitting the assigned 

isotopologue abundances, from Eqs. (4.13) to (4.16) as a function of the measured 

isotopologue abundances for each calibration standard. The calibration equations 

for each isotopologue are then applied to the uncalibrated sample air 

measurements (y*sam), to produce calibrated isotopologue abundances (y*cal): 

𝑦∗𝑐𝑎𝑙 = (𝛼 ∙ 𝑦∗𝑠𝑎𝑚
2) + (𝛽 ∙ 𝑦∗𝑠𝑎𝑚) + 𝛾 (4.18) 

The CO2 mole fraction is then just the sum of these calibrated isotopologue 

abundances. The final step for calculating δ13C, δ17O and δ18O, is to convert these 

calibrated isotopologue abundances to delta values on the VPDB-CO2 scale. This is 

done by first inverting Eqs. (4.14) to (4.16) to calculate the calibrated isotope 

ratios 13r, 17r and 18r, and then inverting Eq. (4.12) to calculate the delta values:  

δ∗
𝑉𝑃𝐷𝐵 = (

 ∗𝑟𝑐𝑎𝑙

 ∗𝑟𝑉𝐷𝑃𝐵
− 1) ∙ 1000 ‰ (4.19) 

where *rcal is the calibrated isotope ratio of each isotopologue in the sample 

measurement, *rVPDB is the standard isotope ratio on the VPDB-CO2 reference scale 

(Table 4.3), and δ*VPDB is the final air sample isotope delta value on the VPDB-CO2 

scale.  The introduced CMFD will not occur using this calibration method, thus a 

correction for this is not necessary. Δ17O is calculated using Eq. (4.8) and the 

δ17OVPDB and δ18OVPDB values calculated from Eq. (4.19).  

4.4.2 Sources of uncertainty in the calibrations 

4.4.2.1 Assigned values of calibration standards  

Two of the calibration standards (D251502 and D477509; Table 4.2) have the 

same assigned δ18O value of -3.04 ‰ on the VPDB-CO2 scale; however, when run 

on the TILDAS the analyser response for these two cylinders is consistently 
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different. From Eq. (4.9) (section 4.4.1.1) in the RM, the uncalibrated drift-

corrected measured values of δ18O in these two standards differ by 0.11 ‰; this 

discrepancy will then propagate through the calibration procedure leading to error 

in the final calibrated air measurements. Crucially, in the RM the residuals of the 

‘calibrated’ measured δ18O values from the assigned values in the calibration 

standards are used for the CMFD correction (Eq. (4.11); section 4.4.1.2). This 

difference in the measured values of the calibration standards could be due to an 

assignment issue, which δ18O is known to be susceptible to. D447509 was 

purchased, and assigned, at a different time to the other three standards therefore 

it is likely that this is the misassigned standard. To confirm this, the calibration 

standards need to be sent for reanalysis.  

Although the measured δ18O values are not directly used in the AM 

calibration, if this is an assignment issue then the AM will also be sensitive to this, 

as the assigned δ18O values are required in Eq. (4.12) to calculate the isotope ratios 

of each calibration standard. Again, this error would then propagate through the 

AM calibration procedure leading to uncertainty in the final calibrated sample air 

measurements. For both calibration methods, the δ17O value is unknown in the 

calibration standards and is instead calculated from the assigned δ18O values. 

Therefore, the uncertainty in the δ18O assignment is also present in the δ17O 

values.  

The calculation of δ17O from δ18O is also reliant on the assumption of mass 

dependent fractionation. Most fractionation processes in nature are 

thermodynamic or kinetic – both of which are mass-dependent, but mass 

independent fractionation from processes such as photolysis can cause small 

deviations from this mass dependent relationship. However, these deviations are 

typically < 1 ‰ (e.g. Miller, 2002), and thus negligible in this context (Griffith, 

2018). 

4.4.2.2 Unassigned reference tank   

The delta values of the isotopologues in the RT used in the calibrations has 

not been assigned, i.e., they are unknown. For the purposes of drift-correction in 

Eq. (4.9) of the RM and Eq. (4.17) of the AM, this is irrelevant. The AM calibration is 

independent of the RT, however, a key step in the RM of calibration is dependent 
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on the RT delta values of each isotopologue. As these values are not assigned, they 

have been assumed from the y-axis intercept of a linear fit of the assigned values of 

the four calibration standards against their measured values. As these linear 

regressions do not result in a perfect fit (Table 4.4), there is uncertainty in the δ*RT 

values used in the calibration, and therefore in the final calibrated air sample 

values, particularly due to the potential misassignment of one of the calibration 

standards previously discussed. Even a small change in this y-axis intercept can 

lead to much larger difference later in the calibration when converting to ‰ or per 

meg. 

Table 4.4. R2 values obtained from the linear regression of the assigned values of 
the calibration standards against the measured values. 

Isotopologue R2 

636 0.9987 
628 0.9998 
627 0.9989 

 

In Steur et al. (2021), their RT had been assigned on the VPDB-CO2 scale 

and they obtained a perfect fit from the linear regression; however they only 

performed a 2-point calibration. We have performed a 4 point calibration which, in 

theory, should provide a more robust calibration, but due to the RT not being 

assigned, the y-axis intercept is not anchored which leads to additional 

uncertainty. 

4.4.2.3 CO2 mole fraction dependence 

Although the CMFD introduced through the RM of calibration is corrected 

for, CMFD can also result from non-linearities in the relationship between the CO2 

mole fraction and the measured isotopologue abundances (Wen et al., 2013; Steur 

et al., 2021). This source of CMFD should be characterised through the 

measurement of a gas with known CO2, δ13C, δ17O and δ18O values which is then 

diluted back to different CO2 mole fractions. The CMFD can then be determined 

from the analysis of the linear fits of the measured isotopologue (y636, y628, y627) 

abundance as a function of the measured 626 abundance (Steur et al., 2021).  Such 

experiments have not been completed for the TILDAS at WAO, and as such this 

CMFD has not yet been characterised. In their experiments on the TILDAS, Steur et 
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al. (2021) found that non-linearities occurred for y636 and y627 but are only 

significant if the range of the measured CO2 mole fraction is greater than 100 ppm. 

For y628, however, even when the CO2 mole fraction range was much greater than 

100 ppm significant non-linearities were not observed and they concluded that the 

nonlinearities were below the range of detection in their experiments. At WAO, the 

observed CO2 mole fraction typically ranges between 410 and 490 ppm, therefore 

the CMFD resulting from non-linearities may not be significant; however, this is 

uncertain and experiments to characterise this CMFD should be undertaken in the 

future.  

4.4.2.4 Pressure anomaly 

As described in section 2.4.1, before injection into the TILDAS optical cell, 

the gas to be measured is held in an intermediate volume until it reaches a 

pressure of 270 torr, at which point it is then injected into the optical cell. The 

pressure in the intermediate volume is read by a pressure gauge and fed back to 

the computer, which makes a prediction to determine when to open the valve to 

allow the gas to inject into the cell. However, the TILDAS computer has been 

inconsistently lagging, meaning that the valve to allow injection was not always 

opening at the correct time. This then caused pressure spikes in the 

measurements, which thus affected the precision of the measurements. The key 

diagnostic for this is the ‘pressure anomaly’ which is the difference between the 

cell pressure of the sample gas and the RT gas, calculated as ((sample pressure/RT 

pressure)-1)*1000. For any data point, if the pressure anomaly fell outside the 

range of -2 to 1, this data were flagged. This pressure anomaly affects both the 

calibration gas measurements, and the sample air measurements. To solve this 

issue in the future, the TILDAS computer is being replaced.  

4.5 Comparison of calibration methods  

4.5.1 Calibrated ambient air measurements method comparison 

The calibrated δ13C, δ17O, δ18O and Δ17O values and CO2 mole fractions from the air 

measurements from September 2021 to October 2022 are displayed in Figure 
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4.5a-e for the AM calibration methods. The RM results are not displayed here as 

they are relatively close to those of the AM and would not be visible on the plots; 

Figure 4.5f-j show the differences between the calibrated delta values and CO2 

values between the RM and AM methods. In this section I focus only on the 

calibration methods themselves and the difference between the results.  

The average difference in the CO2 mole fraction between the AM and RM 

(AM-RM) over the entire time series is -0.066 ± 0.019 ppm, this is within the WMO 

compatibility goal of 0.1 ppm. The difference in the CO2 mole fraction between the 

two methods is not consistent, i.e., one method is not always higher than the other. 

Instead the AM produces a larger range of values than the RM with the values at 

the lower end of the observed range being lower and those at the higher end being 

higher than the RM results. At WAO, CO2 has been measured continuously, in situ, 

since 2008 using an Ultramat 6E NDIR analyser (Siemens Corp.) and is reported on 

the WMO-X2019 scale.  The average difference over the entire time series between 

the AM and the Siemens CO2 data is -0.157 ppm. The RM shows a better agreement 

with the Siemens CO2 data with an average difference of  -0.092 ppm.  
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Figure 4.5. (a) – (e) Time series data from the Aerodyne TILDAS at Weybourne from 14Sep2021 to 12Oct2022 with a data point every 4 min, 
using the AM for analyser calibration; the RM was not plotted here as the values are so close to those from the AM. All data are reported on the 
VPDB-CO2 scale. The large gap in the data from Dec2021 to Feb2022 was due to temperature control issues with the oasis chiller. (f) – (j) The 
difference in the isotope’s delta values and CO2 mole fraction calculated from the two different calibration methods (AM - RM), where the red 
line indicates the average difference over the entire time series and the shaded area represents the WMO compatibility goals
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The average difference in the δ13C value between the two calibration methods 

(AM-RM) over the entire time series is -0.062 ± 0.029 ‰. For δ13C the WMO 

compatibility goal is ± 0.01 ‰, the difference between the two methods is well 

outside of this, but is within the extended goal of ± 0.1 ‰. In general, the RM results 

have a larger range than the AM results, with the values at the lower end of the 

observed range being slightly lower and those at the higher end being higher. This is 

visible in Figure 4.5(i), where the difference between the two methods does not 

centre around zero, but instead is anti-correlated with the δ13C values in Figure 

4.5(d). The difference between the δ13C values from the two methods also displays a 

distinct diurnal and seasonal cycle (Figure 4.6), with a larger difference in the 

afternoon and during the summer. This diurnal and seasonal pattern is anti-

correlated with that of δ13C, which is lower overnight and during the autumn.  

 

Figure 4.6. (a) Monthly and (b) hourly means of the difference in the δ13C values 
from the AM and RM calibrations (AM-RM). Shading indicates 95% confidence 
intervals on the means. Note, the monthly means for December-February have been 
excluded due to the gap in the time-series.  

The difference between the two calibrated time series for δ13C is not only anti-

correlated with the δ13C time series, but is also correlated with the CO2 mole fraction 

time series (Figure 4.7). The differences between the two calibration method values 

for δ13C are smaller between ~435 – 445 ppm, and then diverge again outside this 

range i.e., for values below 440 ppm the RM results are lower than those from the AM 

with the converse being true above a CO2 mole fraction of ~440 ppm. This 

relationship between the difference between the calibration methods and the CO2 

mole fraction implies that the CMFD has not been fully corrected for in the RM, and 

would explain the seasonal and diurnal pattern in the difference – as CO2 mole 
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fractions are higher over the autumn/winter months and overnight. Due to the 

sources of uncertainty in the calibrations discussed in section 4.4.2, particularly the 

unassigned RT and CMFD of the RM, it is therefore more likely that the AM values are 

reliable than the RM values   

 

Figure 4.7.  Difference between the AM and RM calibrated δ13C values, illustrating a 
quadratic dependence with CO2 mole fraction (with AM calibration).  

The average difference in the δ17O values between the two calibration 

methods (AM-RM) over the entire time series is 0.010 ± 0.003 ‰, this is the same as 

our compatibility goal; however, due to the seasonality in the difference, a large 

period of the time series during the spring and summer is not within this goal Figure 

4.5(h). For δ18O the average difference is 0.020 ± 0.006 ‰, which is well within the 

WMO compatibility goal of 0.05 ‰. Unlike the difference between the δ13C values for 

each calibration method, the AM results are consistently higher than the RM results 

for both δ17O and δ18O. Again, for δ17O and δ18O, there is a correlation between the 

difference in the values between the two calibration methods and the CO2 mole 

fraction; however, for both of these species the differences are more closely 

correlated with the measured values of the species themselves (Figure 4.8) with a 

larger difference in the values produced between the two calibration methods when 

the observed value is higher. This relationship is also demonstrated in Figure 4.5, 
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where the seasonal peak in values for both δ17O and δ18O is during May/June, 

whereas for CO2 this is during March. 

The average difference in the Δ17O value between the two calibration methods 

(AM-RM) over the entire time series is -0.17 ± 0.59 per meg, and is generally centred 

around zero (with the exception of some excursions, to be discussed). The magnitude 

of the difference between the two methods, in the context of the accuracy required for 

scientifically useful observations will be discussed in section 4.6. As with δ13C, the 

difference between the two methods exhibits a quadratic dependence on the CO2 

mole fraction (Figure 4.9a), with the difference initially decreasing as the CO2 mole 

fraction increases until ~440 ppm and then decreasing.  

 

Figure 4.8. (a) δ18O calibration method differences and AM calibrated CO2 mole 
fraction, with a linear relationship shown in red. (b) δ18O calibration method 
differences and AM calibrated δ18O values, with a linear relationship shown in red. (c) 
δ17O calibration method differences and AM calibrated CO2 mole fraction, with a 
quadratic relationship shown in red. (d) δ17O calibration method differences and AM 
calibrated δ17O values, with a linear relationship shown in red. 
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Figure 4.9. (a) Δ17O calibration method differences and AM calibrated CO2 mole 
fraction, with a quadratic relationship shown in red. (b) Δ17O calibration method 
differences and AM calibrated Δ17O values, with a linear relationship shown in red.  

The large excursions from the zero line seen in Figure 4.5f all occur during 

periods of high CO2 (e.g. Figure 4.10), again this is indicating a problem with the 

CMFD correction applied to the RM, likely due to the unassigned RT as discussed in 

section 4.4.2.  

 

Figure 4.10. (a) Δ17O and (b) CO2 mole fraction time-series calibrated using the AM 
and (c) Δ17O and (d) CO2 mole fraction difference between the calibration methods 
(AM – RM) from 15Mar2022 – 03Apr2022. 

Overall, there are differences between the two calibration methods which, 

with the exception of δ13C, fall within the compatibility goals for each species; 

however, there are distinct seasonal cycles and dependence on CO2 mole fraction of 
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these differences. Due to the unassigned reference tank causing large uncertainties in 

the RM calibration for CMFD correction it is likely that this is the cause of these 

differences between the methods. For this reason, I will only present the AM 

calibrated data in section 4.6.  

4.5.2 Target tank  

As the signals in the isotopic composition of CO2 are very small, it is crucial to assess 

the TILDAS’s precision over time. It is particularly important to assess the precision 

and accuracy of both the δ18O and δ17O measurements over time, as Δ17O is calculated 

from these values. The World Meteorological Organization (WMO) Global 

Atmospheric Watch (GAW) strongly recommend the regular analyses of a ‘target 

tank’ (TT) to estimate measurement system performance, even if this measurement 

does not cover all sources of uncertainty (Crotwell et al., 2020). The TT cylinder was 

run 12 times in the period between 03Aug2022 and 11Oct2022, all calibrated using 

the 21Jun2022 calibration. For the first 7 runs the TT was measured on the TILDAS 

for 1 hour. For the final 4 runs measurement time was increased to 5 hours, to see if 

this improved the TT results. The TT was measured in the same way as the 

calibration gases, where flow through the TILDAS was alternated with the RT every 2 

minutes, resulting in one drift-correct TT measurement every 4 minutes. For the 1 

hour runs, the first 4 minutes were removed to account for the cell sweepout time. 

For the 5 hour runs, between 44 and 68 minutes were removed at the start of each 

run due to drifting values in the first half of the run. Additionally, some of the 4 

minute data points within each run were filtered out due to spiking in the pressure 

anomaly, as discussed in section 4.4.2.3. Therefore, for the 1 hour and 5 hour runs, 

the actual length of data used in the calculation of the TT measured value was 

variable. The number of 4 minute points used in the calculation of the average of each 

TT run are given in Table 4.5. 
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Table 4.5. The number of 4 minute data points used in the calculation of the average 
of each TT run.  

Date of TT run No. of points used  
03Aug2022 12 
04Aug2022 11 
08Aug2022 14 
10Aug2022 14 
11Aug2022 15 
15Aug2022 14 
17Aug2022 13 
22Aug2022 13 
05Sep2022 13 
19Sep2022 71 
16Sep2022 68 
04Oct2022 48 
11Oct2022 72 

 

In order to assess the precision of the delta value measurements a TT with 

unknown delta values was measured repeatedly on the TILDAS to assess the 

‘repeatability’ of the measurements over time, as well as the difference between the 

two calibration methodologies. Repeatability is defined as the closeness of agreement 

between results of successive measurements of the same measure carried out under 

the same conditions, and is considered as a proxy for the precision of a measurement 

system (Crotwell et al., 2020). Therefore, I calculated the repeatability as the mean ± 

1σ standard deviations of the average of two consecutive data points within the same 

run of the TT. I deliberately only used two data points to calculate each standard 

deviation to more closely mimic in-situ continuous measurements where one can 

only measure an outside air sample once at any given time (whereas when measuring 

air from a cylinder, in principle we could measure it multiple times and expect to get a 

smaller standard deviation).  The results are then compared to the WMO/GAW 

repeatability goals, which are assumed to be half of the WMO/GAW ‘compatibility 

goals’, where compatibility refers to the acceptable level of agreement between two 

laboratories when measuring the same air sample (Crotwell et al., 2020). 

Compatibility is often used as a measurement of the accuracy of a 

measurement system (Crotwell et al., 2020). As the delta values of the TT have not 

been assigned on the VPDB-CO2 scale, I cannot calculate how far the measured values 

are from the assigned values; however, the compatibility goals can be used to assess 

the drift in the measured TT delta values over time. The δ13C network compatibility 
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goal is 0.01 per mil, with an extended goal of ± 0.1 ‰; the δ18O goal is ± 0.05 ‰, with 

an extended goal of ± 0.1 ‰.  There are no established goals for δ17O or Δ17O, but my 

research group has set out goals of ± 0.01 ‰ for δ17O and ± 10 per meg for Δ17O, 

aimed at obtaining scientifically useful data based on anticipated natural spatial and 

temporal variability (Koren et al., 2019).  

The δ13C, δ17O, δ18O and Δ17O values obtained for the TT for each calibration 

method are displayed in Figure 4.11. When considering the results in the following 

sections, it is important to note that many background station measurements 

continue to show persistent offsets that are much larger than those stipulated by the 

WMO/GAW network goals (Crotwell et al., 2020), demonstrating that these goals are 

very challenging and the measurement community struggles to routinely meet them.  

Table 4.6 presents the repeatability results for the 1 and 5 hour TT runs for 

each delta value. For each delta value, the repeatability of the measurements is worse 

for the 5 hour runs than the 1 hour runs. This is predominantly due to an outlying run 

within the 5 hour runs; Figure 4.12, as an example, shows the average repeatability of 

each TT run which were used to calculate the RM δ13C values in Table 4.6, the TT on 

04Oct2022 has a much larger average and SD than each of the other runs. The 

04Oct2022 TT was run for 5 hours, but only 48 out of the 75 4 minute points were 

retained for the final calculation after removing the cell sweepout time and filtering 

for pressure anomaly spikes. The large number of filtered points during this run 

indicates that the pressure anomaly spikes were particularly frequent thus affecting 

the general precision of the instrument. However, in general, running the TT for a 

longer period of time did not improve the repeatability. The repeatability is slightly 

worse for the AM than the RM for all of the isotope’s delta values, for Δ17O the 

repeatability of the RM is slightly better than the AM when running the TT for 5 hours 

(a 0.012 per meg difference). For each method the only delta value within the 

WMO/GAW repeatability goal is δ18O; δ13C is within the extended goal. If we were to 

apply the WMO/GAW extended goal to δ17O, both methods would be within this goal. 

The repeatability obtained for Δ17O on the TILDAS analyser is far outside of the goal, 

but closer to the ‘extended goal’ for measurement precision of ± 10 per meg that 

Hofmann et al. (2017) reported would be required to capture seasonal variations and 

for Δ17O to be useful as a tracer for GPP. It is again worth noting that these goals are 

very challenging, and that it is expected that after the TILDAS computer is replaced 
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and the other sources of uncertainty in the calibrations (section 4.4.2) are resolved, 

that the repeatability of these measurements will improve. 

 

Figure 4.11. δ13C, δ17O, δ18O, and Δ17O values from repeated measurement of the TT, 
calibrated using the RM (red) and AM (blue). Error bars indicate ± 1 σ SD. Dashed 
lines indicate average values for the RM (red) and AM (blue).  Before 19Sep22 TT 
runs were 1 hour, after this they were 5 hours. Note the different units for Δ17O, 
where 1 ‰ equals 1000 per meg. 
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Table 4.6. Repeatability of each isotope’s delta value for the TILDAS, for ‘1 hour’ and 
‘5 hour’ runs 

 δ13C (‰) δ17O (‰)d δ18O (‰) Δ17O               
(per meg)d 

1 hr 5 hr 1 hr 5 hr 1 hr 5 hr 1 hr 5 hr 
RM 
repeatabilitya 

±0.016 
±0.008 

±0.025 
±0.015 

±0.017 
±0.001 

±0.023 
±0.007 

±0.016 
±0.009 

±0.022 
±0.007 

±13.98 
±5.54 

±17.52 
±0.43 

AM 
repeatabilitya 

±0.017 
±0.008 

±0.027  
±0.019 

±0.018 
±0.007 

±0.023 
±0.007 

±0.017 
±0.009 

±0.023 
±0.010 

±14.09 
±5.58 

±17.64 
±0.043 

WMO/GAW 
goalb  

±0.005 
 

±0.005 ±0.025 
 

±5 

‘Extended 
goal’c 

±0.05 ±0.05 ±0.05 ±10 

a Values are calculated using the method in Kozlova and Manning (2009) and Pickers et al. 
(2017). Mean ± 1σ standard deviations of the average of two consecutive data point 
measurements within each run of the TT. Uncertainties are given on these mean standard 
deviations, illustrating that the analytical repeatability is variable over time. 
b  The repeatability of a measurement should be at most half of the value of the WMO/GAW 
compatibility goal. WMO/GAW’s compatibility goals are the scientifically desirable level of  
for measurements of well-mixed background air. 
c  ‘Extended goals’ are also provided by WMO/GAW as guidelines for studies in which the 
more stringent goals are not required (Crotwell et al., 2020).  
d WMO/GAW do not provide goals for δ17O or Δ17O. The values listed are the goals my 
research group has set themselves based on obtaining scientifically useful data based on 
anticipated natural spatial and temporal variability.  
 
 

 

 

Figure 4.12. RM δ13C repeatability values obtained for each TT run (± 1 σ SD). Blue 
points are 1 hour runs and green pints are 5 hour runs. The grey shading indicates 
the WMO/GAW extended compatibility goals.  
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Table 4.7 presents the average values for each species over all the TT runs, as 

well as the average difference between the two calibration methods. The average 

difference between the two methods has a very low standard deviation, again this is 

due to the same calibration being used over the entire time period.  

Although the compatibility cannot be directly calculated, as the isotope delta 

values of the TT are unknown, the range of the TT results (Table 4.7) are far outside 

of the WMO compatibility goals of ± 0.01 ‰ for δ13C and ± 0.05 ‰ for δ18O. However, 

in the last WMO round robin large discrepancies were observed among laboratories 

of up to 0.09 ‰ and 0.4 ‰ for δ13C and δ18O, respectively (Crotwell et al., 2020), 

demonstrating the challenge of routinely meeting these goals. The ranges of δ17O and 

Δ17O are also outside the goals set out by my research group of ± 0.01 ‰ and 10 per 

meg, respectively, although δ17O is within the extended goal. As the range of values 

obtained for Δ17O are far outside the goals, the variability in the results implies that 

the compatibility goals would not be met. As a caveat to this, it is likely that the 

analyser performance is being impaired by the pressure anomaly spikes, even after 

filtering, and the performance should improve once the computer is swapped out, 

with further improvement if the sources of uncertainty in the calibrations are 

resolved.  

Table 4.7. Average (± 1σ SD) and range of values for each isotope’s delta value 
measured by the TILDAS for the unknown cylinder.  

 δ13C (‰) δ17O (‰) δ18O (‰) Δ17O  
(per meg) 

Compatibility 
goal 

±0.01 ±0.01 ±0.05 ±10 

RM 
avg. 

-8.937 
±0.021 

-4.620 
±0.035 

-8.519  
±0.049 

-157.40 
±20.97 

RM range 0.08  0.11 0.14 67.35 
AM avg. -8.990 

±0.020 
-4.645 
±0.035 

-8.568  
±0.049 

-156.15 
±21.13 

AM range 0.07 0.12 0.14 67.86 
Average 
difference 
(RM – AM) 

0.054 
±0.001 

0.024 
±0.000 

0.049    
±0.004 

-1.25    
±0.16 
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4.6 Seasonal amplitudes  

In order to put the differences between calibration methods and precisions of the 

TILDAS discussed in the previous sections into context, the seasonal cycles of each 

isotope’s delta values were calculated. The data were averaged to hourly values, and 

can be seen in black in Figure 4.13. For analysis of the seasonal amplitudes, the 

atmospheric background of each isotope’s delta values was calculated. Due to 

measurement gaps in both the TILDAS and radon analysers, using the radon method I 

present in Chapter 3 a background could only be produced for 4 months; therefore, 

backgrounds for each isotope’s delta values were calculated using rfbaseline. A full 

description of the rfbaseline method for calculation of backgrounds can be found in 

section 3.4.1.1. In brief, rfbaseline was developed by Ruckstuhl et al. (2012) and can 

be implemented using the ‘rfbaseline’ function from the ‘IDPmisc’ package in R 

(Ruckstuhl et al., 2020). This function uses a statistical approach, based on local 

regression of the time series, over a moving time window. As smoothing window (or 

span) equivalent to approximately 4 weeks was used for each species, with a B value 

of 0.4 for δ13C and 4 for the other three isotope’s delta values. For Δ17O an additional 

background with a smoothing window of approximately 8 weeks, to increase the 

stiffness of the background so that the fit is more representative of the seasonal 

variability, was also produced. These backgrounds are also displayed in Figure 4.13. 

Using these background values, the monthly average signal for each isotope’s delta 

values was then calculated (Figure 4.14). 
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Figure 4.13. Hourly averaged data calibrated using the AM for (a) Δ17O, (b) δ18O, (c) 
δ17O, and (d) δ13C. The red lines indicate the background as calculated using 
rfbaseline. The blue line in (a) indicates an alternate background for Δ17O using a 
stiffer rfbaseline fit. Note the different units for Δ17O, where 1 ‰ equals 1000 per 
meg. 
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Figure 4.14. Average monthly background values of (a) Δ17O, (b) δ18O, (c) δ17O, and 
(d) δ13C. The red lines display the background average across all months. Note the 
different units for Δ17O, where 1 ‰ equals 1000 per meg. The background average 
for the 2 months smoothing of Δ17O has not been plotted as it sits on top of the 1 
month smoothing average on this scale. 
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The monthly average δ13C value is highest in August and lowest in February, 

with a peak-to-peak amplitude of 0.81 ‰ and an average signal of -8.61 ± 0.26 ‰ 

(Figure 4.14d).  In section 4.5.2 when comparing the two calibration methods, the 

average difference was -0.062 ± 0.029 ‰, or 7 % of the seasonal amplitude. The 

repeatability calculated for the AM (1 hour runs) was ± 0.017 ± 0.008 ‰ , or 2.10 % 

of the seasonal amplitude; thus, the signal-to-noise ratio here is large. The seasonal 

cycle of δ13C is driven by the net uptake of carbon during the growing season 

increasing δ13C and net release of δ13C during the winter, and the timings of the peaks 

in δ13C in Figure 4.14d align with this process.  

The monthly average δ17O is highest in May and lowest in December, with a 

peak-to peak seasonal amplitude of 0.90 ‰ and with an average signal of -0.12 ± 0.27 

‰. In section 4.5.2 when comparing the two calibration methods, the average 

difference between the two calibration methods was 0.010 ± 0.003  ‰, or 1.11 % of 

the seasonal amplitude; therefore, even though the calibration methods differ, this 

difference is small in the context of the signals being investigated. The repeatability 

calculated for the AM (1 hour runs) was ± 0.017 ± 0.009 ‰, or 1.89 % of the seasonal 

amplitude; again, the seasonal cycle is clearly visible with a high signal-to-noise ratio.  

The monthly average δ18O is highest in May and lowest in December, with a 

peak-to-peak seasonal amplitude of 1.58 ‰. In section 4.5.2 when comparing the two 

calibration methods, the average difference between them was  0.020 ± 0.006 ‰, or 

1.3 % of the seasonal amplitude; as with δ17O, the difference between the methods is 

small compared to the magnitude of the seasonal cycle. In terms of repeatability from 

the TT measurements, δ18O was within the goal with a value of ± 0.017 ± 0.009 ‰, 

which is equivalent to 1.08 % of the seasonal cycle. In the northern hemisphere, 

exchange with the terrestrial biosphere dominates the signal δ18O, with isotopic 

exchange with leaf-water during photosynthesis enriching the δ17O and δ18O content 

of CO2 released from plants (Cuntz et al., 2003). Thus, the peak in these isotope’s delta 

values observed in May is consistent with this.   

When using a smoothing window of 1 month to calculate the background, Δ17O 

is highest in June and lowest in December, with a peak-to-peak seasonal amplitude of 

94.71 per meg. In section 4.5.2 when comparing the two calibration methods, there 

was an average difference of -0.17 ± 0.59 per meg, or 0.17 % of the seasonal 

amplitude; thus, indicating that even though the calibration methods differ, this 

difference is far smaller than the signals being investigated. The repeatability of the 
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Δ17O measurements for the AM calibration method is ±14.09 ± 5.58 ‰ (1 hour runs), 

or 14.88 % of the calculated seasonal amplitude; this smaller signal-to-noise ratio 

may hinder the use of these observations for useful scientific interpretation, 

nevertheless, the signal of the seasonal cycle is clearly distinguishable above the noise 

of the data. Additionally, there is a lot of variation within the TT results for Δ17O, with 

large changes between neighbouring runs (Figure 4.11). Although the TT was not run 

for the entire period for which I have presented observations, the variability in the 

measured values of the TT mean that the TILDAS observations may also be subject to 

this short-term variability caused by the analyser itself; thus, some of the short-term 

variability of the signal observed in the Δ17O time series may not be ‘real’. For this 

reason, I ran the rfbaseline function on Δ17O with a 2 month smoothing window, to 

create a ‘stiffer’ background which is less influenced by short-term variations. With 

the longer smoothing window, Δ17O is still highest in June, and lowest in December, 

but the peak-to-peak seasonal amplitude reduced to 51.38 per meg. Again, the 

repeatability of the Δ17O measurements for the AM calibration method is ± 14.09 ± 

5.58 ‰ (1 hour runs), which in this case is 27.42 % of the seasonal amplitude.  

In terms of comparison to values from the published literature, the available 

observational data on the Δ17O composition of tropospheric CO2 is limited. The first 

published high precision data was from Barkan and Luz (2012) from a limited set of 

flask samples in Spring 2012 in Jerusalem, Israel; from these samples they found an 

average Δ17O signal of +37 ± 9 per meg (VSMOW scale, λRL = 0.5229). Thiemens et al. 

(2014) report a decadal record of Δ17O from flask samples in La Jolla, California, USA, 

they observed a mean Δ17O signal of +30 ± 40 per meg (SMOW scale, λRL = 0.5229). 

Further, Liang and Mahata (2015) observed an average Δ17O signature of  +60 ± 40 

per meg (VSMOW scale, λRL = 0.5229), from flask samples in Taiwan. Finally, Hofmann 

et al. (2017) reported an observed average Δ17O value of -20 ± 50 per meg (VSMOW 

scale, λRL = 0.5229), from a year’s worth of two-weekly samples from Go ttingen, 

Germany, which is at a similar latitude to WAO (location displayed in Figure 4.15). 

Between these values from the literature there is variability between different 

sampling locations and a large SD on the reported values. From the Δ17O values 

calculated for WAO (Figure 4.14), I calculated an average background value (with 2 

months smoothing) of -6.9 ± 15.7 per meg (VPDB-CO2 scale, λRL = 0.5229) and an 

average for all of the data of -21.5 ± 31.6 per meg. Although these values can’t be 
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directly compared to the values quoted above due to the differing reporting scales, 

there is good agreement in the general magnitude and SD of the average signal. 

The seasonal cycle of Δ17O in atmospheric CO2 has been modelled by Koren et 

al. (2019) using a global 3D simulation. In this study they calculated a northern 

hemispheric seasonal cycle peak-to-peak amplitude of 15.7 per meg. The seasonal 

amplitude calculated from the TILDAS data is a factor of three larger than this when 

using the smaller result from the 2 month smoothing window. However, the Δ17O 

signature and cycle was found to be variable with the hemisphere; Koren et al. (2019) 

also modelled Δ17O the global peak-to-peak seasonal amplitude (Figure 4.15). From 

this global simulation the peak-to-peak amplitude at WAO is around 20 per meg, 

compared to our observed amplitude of 51.4 per meg. Hofmann et al. (2017) 

presented a comparison of their observed Δ17O values compared to 3D simulated 

atmospheric Δ17O values, for Go ttingen, Germany, which is at a similar latitude to 

WAO, and also reported the modelled amplitude to be around a factor of three 

smaller than observed, which indicates that the amplitude observed at WAO is 

reasonable, even with the disagreement from the simulated values.  

 
Figure 4.15. Simulated Δ17O peak-to-peak seasonal amplitude for the lowest 500 m of 
the atmosphere from TM5 model predictions. Locations for which published 
measurements of ∆17O in CO2 exist are indicated with red symbols. Figure taken from 
Koren et al. (2019). 
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4.7 Conclusions 

A year long time-series of δ13C, δ18O and  δ17O in tropospheric CO2 from WAO 

using an Aerodyne TILDAS analyser has been presented, and Δ17O calculated from 

these measurements. The differences between two calibration methods used in 

isotopologue research were assessed and the potential sources of uncertainty in these 

calibrations were discussed. The performance of the TILDAS analyser was then 

evaluated in the context of the WMO/GAW goals and in the context of the signals 

observed in the time-series. 

When comparing the AM and RM methods of calibration, I found small 

differences between the results, with an average difference over the entire time-

series of -0.07 ± 0.02 ppm for CO2, -0.06 ± 0.03 ‰ for δ13C, 0.02 ± 0.01 ‰ for δ18O , 

0.01 ± 0.00 ‰ for δ17O, and -0.17 ± 0.59 per meg for Δ17O. This difference is likely 

caused by the CMFD not being fully corrected for when calibrating using the RM 

method due to the unassigned RT values. Additional sources of uncertainty between 

the methods of calibration included unassigned δ17O values for all of the calibration 

standards, uncertainty in the assigned δ18O value of one of the calibration standards, 

and anomalous pressure spiking when switching between the RT and sample gas. 

From repeated measurements of a TT, I found the repeatability of the δ13C and 

δ18O measurements to be well within the WMO/GAW extended goal of ± 0.05 ‰, 

with very similar values obtained for both calibration methods. Additionally, δ17O is 

well within the goal set out by my research group. The repeatability of the Δ17O 

measurements for both calibration methods is outside of the goal but within the 

wider goal needed to assess seasonal variations and for Δ17O to be useful as a tracer 

for GPP. Additionally, these results would be expected to improve with the resolution 

of the main calibration method uncertainties. 

In the context of the seasonal amplitude of the signal in the delta values and 

Δ17O, neither the difference between the calibration methods nor the repeatability of 

the measurements mask this. Additionally, the Δ17O seasonal signal observed at WAO 

is comparable to the one seen in Go ttingen by Koren et al. (2019). 

With an extended time-series and resolution of uncertainties, the 

measurements of δ13C, δ18O, and δ17O can be used to further increase understanding 

of the global Δ17O budget of tropospheric CO2. 
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4.7.1 Future work 

The measurements presented in this chapter from the TILDAS have been 

shown to be precise enough to resolve seasonal changes in δ13C, δ18O, δ17O and Δ17O; 

however, there are a number of uncertainties that need to be resolved to further 

improve these measurements: 

• Replacement of the instrument’s computer to stop the anomalous pressure 

spikes when switching between the RT and sample air. 

• Assignment of the RT CO2, δ13C, δ17O and δ18O values, which will improve 

the CMFD correction for the RM.  

• Assignment of δ17O values for all of the calibration cylinders. 

• Re-assignment of the δ18O value of one of the calibration standards. 

• Experiments to characterise the CMFD should be undertaken. 

• Continued in situ measurements to examine analyser performance. 

Additionally, continued measurements of these isotopologues at WAO over 

multiple years will allow for the assessment of long-term trends in the time series to 

increase understanding of the Δ17O budget of tropospheric CO2 and to constrain GPP. 
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5.1 High-precision atmospheric O2 measurements using a Picarro 

G2207-i 

High-precision measurement of atmospheric O2, together with concurrent 

CO2 measurement, provides valuable insight into many carbon cycle processes, 

mechanisms, and fluxes. Despite their value, however, only a very small 

community of researchers carry out atmospheric O2 measurements. The main 

reason why this research community is so small is because high-precision O2 

measurements are technically very challenging. With this in mind, I have examined 

the potential of the Picarro G2207-i O2 analyser for high precision measurement. 

Picarro analysers typically have two key advantages over many other analysers: 

(1) long-term baseline stability, which significantly reduces consumption of 

calibration and reference gases (a key logistical and financial challenge in all 

atmospheric greenhouse gas (GHG) measurement applications); and (2) built-in 

correction of water vapour influences on both the spectroscopic measurement and 

the mole fraction dilution of the gas species of interest. The latter property means 

that air samples do not need to be dried prior to analysis (or sometimes partial 

drying is sufficient), a key advantage in GHG measurement, where water vapour 

can cause numerous problems and can result in significant downtime for in-situ 

measurement systems. In addition to these two key advantages, Picarro analysers 

also incorporate built-in, very stable temperature and pressure regulation, 

assisting high-precision measurement.  

When measuring a suite of cylinders of air with known δ(O2/N2) values 

within the typical range of ambient air, the average difference between the G2207-i 

and the declared values was 3.4 ± 2.5 per meg, which is slightly greater than the 

United Nations World Meteorological Organization Global Atmosphere Watch (UN 

WMO/GAW) programme’s compatibility goal of ± 2 per meg but does fall within 

the extended goal of ± 10 per meg, and is similar to what can be achieved by the 

Sable Systems ‘Oxzilla II’ O2 analyser currently employed at the Weybourne 

Atmospheric Observatory (WAO), Norfolk, UK. 

Disappointingly, however, the built-in water-correction of the G2207-i does 

not perform as intended. During in situ tests of the G2207-i analyser at WAO, with 

both no drying and partial drying (fridge only) of the sample air there were very 

large differences between the values measured by the Picarro and that of the 
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existing Oxzilla system. An average difference of 850 ± 31 per meg for no drying 

and -613 ± 32 per meg for partial drying was found. The δ(O2/N2) values reported 

by the G2207-i were highly correlated with the reported water vapour, suggesting 

that a revised water correction procedure might significantly improve these 

results. 

With full drying of sample air (< 1 ppm H2O content), the in situ 

performance of the G2207-i was much improved. But when measuring completely 

dried air, the G2207-i overestimates the required water correction. The average 

difference between the Oxzilla and the water-corrected values was 22.6 ± 7.4 per 

meg compared to 13.6 ± 7.5 per meg for the uncorrected values. Thus, the non-

water corrected values should be used in this case.  

The use of a ‘reference tank’ (RT) to reduce the impact of drift in the 

analyser baseline is necessary. We found that the long-term (several days) 

analyser baseline was very stable, however on shorter timeframes (tens of minutes 

to a few hours), the baseline was more variable, compromising the precision of 

measurements. The average difference between the Oxzilla system and the G2207-

i when measuring completely dried ambient air at WAO and employing an RT 

(every 5 hours) was 13.6 ± 7.5 per meg. From measurement of a quality control 

cylinder referred to as a ‘target tank’ (TT; every ~11 hours during the in situ WAO 

measurement period), the repeatability of the G2207-i was calculated to be ± 5.7 ± 

5.6 per meg, just outside of the WMO/GAW extended repeatability goal of ± 5 per 

meg, and compared to ± 2.2 ± 2.0 per meg for the Oxzilla. The compatibility of the 

G2207-i, also from TT measurements, was calculated to be ± 10.0 ± 6.7 per meg, 

within the extended WMO/GAW compatibility goal of ± 10 per meg, compared to ± 

3.0 ± 2.6 per meg for the Oxzilla. 

I also investigated the use of the G2207-i in a recently developed 

application at UEA of quantifying fossil fuel CO2 (ffCO2) using atmospheric O2 

measurements. The G2207-i found higher ffCO2 values than the Oxzilla, with a 

greater uncertainty of ± 13.0 ppm, which was roughly double that from the Oxzilla 

(± 5.8 ppm). The larger uncertainty of the G2207-i results is predominantly due to 

measurement uncertainty. Unless it is developed further, the G2207-i may only be 

suitable for ffCO2 applications with large CO2 signals, due to the high noise-to-

signal ratio. 
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5.1.1 Future work 

Although the G2207-i was found to not be sufficiently precise and accurate for 

highly demanding atmospheric O2 applications, there is definitely potential for 

future development and improvement, such as:  

• Improvement to the short-term baseline drift of the G2207-i, either by 

improving the stability of the analyser itself, or via more frequent use of 

an RT. In this thesis, I only explored an RT frequency of once every 5 

hours, but this could conceivably be much faster. Other high-precision 

O2 analysers introduce RT analyses much more frequently to correct for 

baseline drift, for example, every 2 seconds, in the case of the vacuum 

ultraviolet analyser, which is the most precise atmospheric O2 analyser 

presently available. 

• Improvement of the built-in water correction procedure of the G2207-i 

to allow for fewer drying requirements of sample air. The high 

correlation between the reported O2 and water vapour measurements 

implies that there is significant potential for improvement to this 

correction procedure. 

5.2 Radon-222 as a tracer for maritime background air masses 

‘Background’ air masses are well-mixed air masses that contain constituent 

gas species at mole fractions that can be considered representative of regional or 

hemispheric background value due to having little influence from localised sources 

of the constituent species. To accurately assess long-term natural and 

anthropogenic emissions influences and short-term pollution events on the 

atmosphere, it is first necessary to identify these background atmospheric 

conditions. Defining of a background is therefore critical for many GHG 

applications, yet this is challenging and within the atmospheric research 

community there is no universally established methodology. I have developed a 

novel method for calculating a ‘regional maritime background’ (RMB) using 

measurements of radon-222 at WAO, and tested it on six atmospheric gas species 

that are of interest in atmospheric research: CO2, O2, hydrogen (H2), methane 

(CH4), carbon monoxide (CO), and nitrous oxide (N2O). The radon method involves 
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selecting radon activity concentration ‘thresholds’ that would filter out air masses 

with recent terrestrial influence. Any months where there were not many air 

masses arriving at WAO with radon activity concentrations below the set threshold 

were flagged for ‘potential terrestrial influence’ and further investigated. 

The resulting backgrounds were then compared to those from a number of 

existing methods. Two modelled backgrounds were used for comparison: one 

calculated from the Met office’s Numerical Atmospheric Modelling Environment 

(NAME), a dispersion model, and one using the Stochastic Time-Inverted 

Lagrangian Transport (STILT) back trajectory model. The radon results were also 

compared to a background derived from meteorological and statistical filtering 

(MET), and a purely statistical method called Robust Extraction of Baseline Signal 

(REBS). 

I found that the use of lower radon thresholds reduces the terrestrial 

influence on an air mass but also reduces the number of observations available for 

the background calculation. Therefore, a balance needs to be found between 

obtaining enough data to represent the RMB and avoiding the adverse effects of 

terrestrial influences. At WAO, of the thresholds investigated, 200 mBq m-3 

provided the least terrestrial influence while still providing a suitable number of 

observations to define the background. During the measurement period analysed, 

over the winter the predominant wind direction at WAO is SE, with few 

observations from the direction of the North Sea; therefore, WAO does not 

experience as many air masses representative of a RMB. The implication of this is 

that the radon-based RMB calculation method may be less successful during the 

winter; however, in comparison to other methodologies, I did not find the RMB 

method to be any worse over winter. RMB calculated from radon during months 

which were flagged for potential terrestrial influence were not more dissimilar 

from the other methodologies than the non-flagged months. For example, for CO2 

the difference between the NAME and radon methods during non-flagged months 

was 1.0 ± 0.9 ppm, and 1.0 ± 0.9 ppm for flagged months; this was similar for 

comparison with the other methodologies. This indicates that even during the 

months where WAO is experiencing fewer air masses from the maritime sector, the 

thresholds used in the radon method are appropriately filtering the time series. I 

also found that it is crucial to manually check the underlying data used in the 
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calculation of radon RMB’s, as gaps in the datasets mean that an estimate may be 

produced from only one value which can significantly bias the monthly estimate. 

In comparison to pre-existing background calculation methodologies the 

differences from the radon background were generally small with some variability 

depending on the processes involved in a given species’ source and sink 

mechanisms. Other findings include: 

• For CO2 and O2, and H2, with large seasonal differences in sources and 

sinks, the differences between RMB and REBS were predominantly due 

to the statistical nature of the REBS method assigning these localised 

fluxes to the background component. 

• For all gas species examined, the offset in the difference between the 

REBS and radon methodologies could be corrected for by ‘tweaking’ the 

input parameters used in REBS. However, if one were to only use REBS, 

these offsets would not be known about. 

• Generally, the agreement between the NAME and radon methods was 

good, particularly as the NAME background was calculated using data 

from Mace Head (MHD), Ireland which is located on the west coast of 

Ireland, receiving predominantly maritime air masses from the North 

Atlantic Ocean with very little, if any, terrestrial or pollution sources or 

sinks, and thus is a good site for determining background signals.  

• For H2 there were larger disagreements between the NAME and radon 

methods, with an average difference of is 12.0 ± 4.2 ppb, likely due to 

the strong latitudinal meaning that a background measured at MHD 

would not be suitable for WAO. Interestingly, however, this was not the 

case for CO, which also displays strong latitudinal gradients, with an 

average difference of -0.4 ± 3.9 ppb. 

• The agreement between the NAME and radon backgrounds indicates 

that radon could be used to validate NAME modelled backgrounds.  

5.2.1 Future work 

The use of radon was demonstrated as a suitable method for calculation of a 

monthly RMB at WAO, but there is research that can be conducted to further 

improve this methodology, including: 
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• My analysis should be repeated for non-coastal sites, such as mid-

continental and mountain sites, which will present different challenges. 

• The use of air quality parameters to screen out maritime emissions 

should be investigated as I have assumed that there are no emissions, of 

the gas species being investigated, over the ocean. Using the lowest 

percentage of mole fraction values may account for this, but the use of 

air quality parameters could confirm this. 

• The methodology used to calculate the radon RMB can be further 

developed to reduce the subjectivity used in the selection of some of the 

thresholds used. 

• Analyses should be carried out on the effects of species which have a 

strong latitudinal gradient on the calculation of an RMB using radon.  

• For species with strong latitudinal gradients, investigation into the need 

for removal of data derived from air masses that have been transported 

from other latitudes before the calculation of the RMB for a site.  

5.3 High-precision atmospheric CO2 isotopologue measurements 

using an Aerodyne TILDAS analyser 

High-precision measurements of the isotopologues δ13C, δ17O and δ18O of 

atmospheric CO2, and the calculation of Δ17O from these measurements, can 

provide additional information on the fluxes of CO2 involved in the carbon cycle. To 

date, there have been very few published concurrent measurements of δ13C, δ18O, 

and δ17O, and the subsequent calculation of Δ17O in the troposphere. This is due to 

the challenging requirements of the extremely high measurement precision and 

accuracy that is needed for both δ17O and δ18O to be able to define spatial gradients 

and seasonal cycles of Δ17O, with past studies being limited by the available 

technology. Aerodyne Research Inc. have developed a state-of-the-art tunable 

infrared laser adsorption spectroscopy (TILDAS) CO2 isotopologue analyser. Unlike 

previous isotopologue measurement techniques it allows for the measurement of 

δ17O, in addition to δ13C and δ18O, without the extraction of CO2 from an air sample 

before analysis (which is time-consuming and complex); this capability also means 

that air can be measured continuously, rather than from discrete samples.  
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I have compared the two methods which can be used for calibration of an 

isotopologue analyser: the ratio method (RM), which calculates the delta values 

and then calibrates, and the abundance method (AM), which calibrates on 

individual isotopologue mole fractions and then calculate the isotopologue ratios. I 

found that calibration of the analyser using the RM and AM produced differences in 

the isotopologue and Δ17O values. When measuring ambient air, the average 

difference in Δ17O between the two methods was 0.2 ± 0.6 per meg. These 

differences are correlated with differences in the CO2 mole fraction for each 

method, indicating that the CO2 mole fraction dependency (CMFD) has not been 

fully corrected for, most likely in the RM. These differences may also be caused by 

a number of sources of uncertainty in the calibration methods, including: 

• The TILDAS analyser’s computer was not fast enough, causing pressure 

differences when switching between the sample and reference tank 

(RT). 

• The RT used in the calibrations did not have assigned values of the 

isotopologues; the AM calibration is independent of the RT, however, a 

key step in the RM calibration is dependent on the RT delta values of 

each isotopologue.  

• The δ17O values were unassigned (unknown) in the calibration 

standards, so these were calculated based on the mass-dependent 

fractionation relationship with δ18O.  

•  One of the calibration standards appeared to have a misassigned δ18O 

value. Crucially, in the RM, the residuals of the ‘calibrated’ measured 

δ18O values from the assigned values in the calibration standards are 

used for the CMFD correction. Additionally, this value was used to 

calculate the δ17O and Δ17O in that calibration standard. 

From analysis of TT measurements, the repeatability of the measurements 

was calculated.  For δ13C, δ17O and δ18O the RM calibration method was slightly 

better than that of the AM calibration; both were within the extended repeatability 

goals of ± 0.05 ‰ for each: 

• For δ13C the repeatability was ± 0.016 ± 0.008 ‰ for the RM and ± 

0.017 ± 0.008 ‰ for the AM.  

• For δ17O the repeatability was ± 0.017 ± 0.001 ‰ for the RM, and ± 

0.018 ± 0.007 ‰ for the AM.  
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• For δ18O repeatability for was ± 0.016 ± 0.009 ‰ for the RM, and ± 

0.017 ± 0.009 ‰ for the AM.  

The repeatability of Δ17O did not meet the extended goals of ± 10 per meg, 

with a repeatability ± 14.0 ± 5.5 per meg for the RM and ± 14.1 ± 5.6 per meg for 

the AM. In the context of the observed seasonal cycles in all of the time series, the 

repeatability results and the differences between the calibration methods 

represent a small fraction of the signal.  

5.3.1 Future work 

The TILDAS analyser was shown to produce precise measurements of δ13C, 

δ17O, and δ18O, which can be used to further increase understanding of the global 

Δ17O budget of tropospheric CO2. However, there were a number of uncertainties 

which need to be resolved in future work: 

• Replacement of the instrument’s computer to stop the anomalous 

pressure spikes when switching between the RT and sample air. 

• Assignment of the RT CO2, δ13C, δ17O and δ18O values, which will 

improve the CMFD correction for the RM.  

• Assignment of δ17O values for all of the calibration cylinders. 

• Re-assignment of the δ18O value of one of the calibration standards. 

• Experiments to characterise the CMFD should be undertaken. 

• Continued in situ measurements to examine analyser performance. 

Additionally, continued measurements of these isotopologues at WAO over 

multiple years will allow for the assessment of long-term trends in the time series 

to increase understanding of the Δ17O budget of tropospheric CO2 and to constrain 

GPP. 
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List of abbreviations 

222Rn – Radon-222 

AM – Abundance method 

APO – Atmospheric Potential Oxygen 

CH4 – Methane 

CMFD – CO2 mole fraction dependency 

CO – carbon monoxide 

CO2 – Carbon dioxide 

CRAM – Carbon related atmospheric measurements laboratory at UEA 

CRDS – Cavity ring-down spectroscopy 

ffCO2 – fossil fuel CO2  

GAW – Global atmospheric Watch 

GPP – Gross Primary Production 

HYSPLIT – Hybrid Single-Particle Lagrangian Integrated Trajectory 

ICOS - Integrated Carbon Observation System 

IRMS - Isotope ratio mass spectrometry 

MET – meteorological and statistical filtering 

MHD – Mace Head observatory 

N2 – Nitrogen  

N2O – Nitrous oxide 

NAME – Numerical Atmospheric Modelling Environment from the UK Met. Office 

NCAS – National Centre for Atmospheric Science 

O2 – Oxygen  

O2,NC – δ(O2/N2) without the Picarro water correction procedure 

O2,WC – δ(O2/N2) with the Picarro water correction procedure 

O3 – Ozone 

per meg – A dimensionless unit equivalent to 0.001 ‰  

ppb – parts per billion 

ppm – parts per million 

REBS – Robust extraction of baseline signal 

RM – Ratio method 

RMB – Regional maritime background 

RT – Reference tank 
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TILDAS - Tunable infrared laser direct adsorption spectroscopy 

TT – Target tank 

VPDB – Vienna Pee Dee Belemnite  

WAO – Weybourne Atmospheric Observatory  

WMO - World Meteorological Organization 

WSS – Working secondary standard 

δ(O2/N2) – atmospheric O2/N2 ratio 

Δ17O – Deviation from the mass-dependent fractionation of 17O and 18O 

δ17O – 17O/16O ratio in atmospheric CO2  

δ18O – 18O/16O ratio in atmospheric CO2  

 

 

 


