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Abstract 

 

Anthropogenic emissions greenhouse gases are causing increasing global temperature and 

climate change. The ocean is the largest carbon sink and absorbs 40 % of anthropogenic CO2 

emissions. However, our understanding of the processes involved is still limited. This project 

aims to improve understanding of the ocean carbon cycle though the analysis of short term 

excursions above the baseline data (atmospheric events). This is achieved through the use of 

continuous atmospheric measurements of CO2 and O2  collected from Mace Head 

Atmospheric Research Station, Ireland. The season cycle amplitudes of the CO2, O2 and APO 

data are 17.78 ppm, 149 per meg and 76.57 per meg respectively. Six marine productivity 

related events and five upwelling or ventilation events were identified within the 13 month 

dataset. Seasonality is found in the magnitude of the events. The sign and strength of 

correlation of the oxidative ratios is found to indicate the dominant processes responsible for 

the atmospheric event. I used the air-sea fluxes calculated for these events to test conceptual 

models and found a good fit between the two flux estimates. Four of the modelled fluxes of 

productivity events are within the same order of magnitude of the APO derived fluxes, and 

the remaining two are an order of magnitude greater. In the majority of cases, including the 

heat fluxes increases the difference between APO-derived and modelled fluxes. For 

ventilation events the modelled and APO-derived fluxes are with one exception within the 

same order of magnitude. The modelled flux is, except for one outlier, always greater than the 

APO-derived flux. 
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1. Introduction 

 

Anthropogenic emissions of greenhouse gases are increasing and causing increasing global 

temperatures and climate change (IPCC, 2013). Atmospheric measurements are a vital part of 

observing and understanding the changes in the carbon cycle and the wider climate system 

and enable independent analysis of the ocean carbon cycle (Stephens et al., 1998). The ocean 

is the largest carbon sink (Sabine, 2004) and a vital part of the carbon cycle, however our 

understanding is still limited. It is therefore crucial to improve our knowledge of the ocean 

carbon cycle in order to understand how the ocean carbon sink may change in the future, as 

this will impact atmospheric CO2 concentration as well as the marine biosphere and other 

ocean processes.  

 

 
Figure 1: The Global Carbon Cycle. The black text and arrows represent the carbon cycle in equilibrium, 

red text and arrows represent the present carbon cycle, perturbed by anthropogenic emissions.  Gt C are 

equivalent to Pg C. Source: IPCC, 2007. 

 

Anthropogenic emissions of greenhouse gases are unequivocally causing rising global 

temperatures and global climate change. Cumulative anthropogenic CO2 emissions between 

1750 and 2011 are 555 Pg C, driving an increase of 0.85°C (1880-2012) (IPCC, 2013). These 

emissions are primarily from fossil fuel burning, cement making and changes in land-use. 

However these activities alone would cause an increase in atmospheric concentration greater 

than that seen from atmospheric records. This is due to the CO2 taken up by carbon sinks 

(Figure 1). On the timescales of anthropogenic climate change, the terrestrial biosphere and 

the ocean are of greatest relevance. Figure 1 shows that anthropogenic emissions of 

greenhouse gases have disrupted the equilibrium of the carbon cycle and created increased 

uptake of CO2 by carbon sinks (IPCC, 2007). The ocean carbon sink is especially important, 

as it takes up 40% of anthropogenic emissions (Sabine et al., 2004).  
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The ocean absorbs approximately 40% of anthropogenic CO2 emissions (Sabine et al., 2004). 

This is possible due to the mixing of the surface and deep ocean and the chemical reactions 

that occur in the ocean. CO2 undergoes fast hydration reactions when in the ocean and exists 

in equilibrium with bicarbonate and carbonate ions, which allows greater uptake of CO2 than 

would be possible if all the dissolved carbon existed as CO2(aq). Biological and solubility 

carbon "pumps" act to transport carbon from the surface to the deep ocean, again increasing 

the capacity for CO2 uptake from the atmosphere to the surface ocean. Due to carbonate 

chemistry, increased CO2 absorption increases the acidity of the ocean. Ocean acidification 

has many negative impacts through changes in the chemical speciation and biogeochemical 

cycles of the ocean. Reduction of calcification of CaCO3 shelled organisms under high CO2 

conditions are well-documented (Doney et al., 2013). This will affect a wide range of 

organisms, such as corals and coccolithophores, and the impacts on the broader community 

are still unknown. Further research into the ocean processes currently occurring is needed. It 

is vital that we understand the processes involved in the ocean carbon sink in order to predict 

how it will change in the future, as these changes could have a significant impact on the 

atmospheric CO2 concentration and therefore climate change. 

Figure 2: Atmospheric CO2 and O2 records from Mauna Loa, Hawaii and South Pole. Figure created 

from unpublished data, available at: http://scrippso2.ucsd.edu/. 

 

Atmospheric CO2 was first measured to high precision by Charles Keeling at the Mauna Loa 

Observatory (Keeling, 1960). High precision atmospheric O2 measurements were first made 

by Ralph Keeling in 1989. CO2 and O2 records from Mauna Loa, Hawaii and the South Pole 

Observatory are presented in Figure 2. The shows the trend of increasing CO2 mole fraction 

and declining O2, with seasonal cycles super imposed. As the CO2 seasonal cycle is caused 
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by terrestrial biosphere processes, the seasonal cycle in the Southern Hemisphere is the 

inverse of the Northern Hemisphere. Continuous concurrent measurements of CO2 and O2 

have been shown to be a useful tool in understanding the ocean carbon sink (Keeling and 

Shertz, 1992). Atmospheric O2 measurements are challenging to make to the necessary 

precision. This is seen in the World Meteorological Organisation (WMO) goals for the 

precision of measurements: ±0.1 ppm for CO2 and ± 2 per meg for O2. The higher 

concentration of O2 in the atmosphere, compared to CO2, means that the changes in 

concentration are very small relative to the atmospheric concentration. O2 is therefore 

measured as δ(O2/N2) with units of "per meg", where a change of 4.8 per meg of O2 is 

equivalent to a 1 ppm change in CO2. Although O2 seasonality is mainly influenced by ocean 

processes due to the sea-air exchange described above, the land biosphere does affect the 

mole fraction. Atmospheric Potential Oxygen (APO) was therefore designed as a method to 

investigate the ocean fluxes of CO2 and O2. It is necessarily conservative with respect to the 

terrestrial biosphere. This is achieved using the ratio of O2:CO2 exchanges in terrestrial 

biosphere activity, which are anti-correlated. This ratio has been experimentally determined 

as 1.1. Using this ratio, the terrestrial biosphere exchanges can be cancelled out, leaving only 

the ocean effects on CO2 and O2 (see Equation 2 in Section 3) (Stephens et al., 1998). Except 

for the small long-term influence of fossil fuel emissions, APO variation is caused by O2 

fluxes due to three major processes in the ocean: biological productivity, ventilation and 

thermal effects. The terrestrial biosphere exchanges carbon with the atmosphere on weekly 

timescales, whereas atmosphere-ocean exchanges occur over yearly timescales. This is 

compared to the geologic carbon sink which takes centuries to exchange with the atmosphere. 

However ocean-atmosphere exchange of O2 occurs over approximately three weeks 

(Broecker and Peng, 1982). Marine biosphere productivity takes up O2 and releases CO2 into 

the surface waters, leading to uptake of O2 from the atmosphere and outgassing of CO2. APO 

increases due to the changes in CO2 and O2 mole fractions. The term 'ventilation' refers to 

outgassing of O2 due to mixing of deeper, oxygen-rich and carbon-depleted waters with 

surface waters. CO2 is taken up from the atmosphere. APO therefore decreases. Temperature 

has a small effect on ocean-atmosphere fluxes of gases due to solubility changes. At higher 

temperatures, gas solubility in water decreases and therefore outgassing occurs. This effect 

contributes to the larger O2 marine seasonality relative to CO2 because during winter all 

dominant processes, including increased solubility, cause uptake of O2 and the fluxes of CO2 

cancel out. 

 

This method has been widely used to investigate both long- and short-term ocean fluxes. In 

the long term O2 is declining due to fossil fuel burning and APO is also declining at a slower 

rate, partly compensated by the increase of CO2. APO has been used in combination with 

other methods to quantify the ocean and terrestrial carbon sinks (Keeling and Manning, 

2014). On short timescales (seasonal variation and shorter), APO variability is due to O2 

atmosphere-ocean fluxes. Short-term, quickly changing excursions from baseline atmospheric 

concentration are termed atmospheric 'events'. Atmospheric events can be caused by 

numerous processes such as deep water upwelling, phytoplankton blooms, or anthropogenic 

pollution. van der Laan-Luijkx et al. (2010) used continuous atmospheric measurements in 

the North Sea to detect a negative O2 excursion, or atmospheric event. They correlated the 
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event with meteorological data and used back trajectories to confirm an ocean signal, but 

were unable to confidently confirm a cause for the event. van der Laan et al. (2014) used the 

ratio of O2:CO2 mole fractions during the event (oxidative ratio) to identify the cause of 

atmospheric events. Yamagishi et al. (2008) used continuous CO2 and O2 measurements from 

the east coast of Hokkaido island, Japan to investigate the ocean carbon cycle from April to 

June 2005. They found several atmospheric events characterised by periods of high APO 

ranging in temporal scale from hours to days. They followed a similar methodology using air 

mass back trajectory and monthly averaged marine NPP. In addition, they estimate the sea-air 

flux of O2 using the Jacob (1999) puff model equation. This analysis assumes that all changes 

in the oxygen flux are due to marine productivity, without considering the impact of 

temperature changes. Although they look at short-term events in detail, this is only carried 

out over a short period (3 months). Therefore seasonal analysis of APO event variability is 

not undertaken. They also identify spikes in APO unrelated to NPP variability. The causes of 

these events are not identified. 

 

Mace Head Atmospheric Research Station is situated on the west coast of Ireland and 

receives air mainly from the North Atlantic (34-51% of air (Manning et al., 2011)). Flask 

measurements of atmospheric CO2 and O2 from Mace Head have previously been compared 

to data from North Sea platforms and the Netherlands (van der Laan-Luijkx et al., 2010a; 

Sirignano et al., 2008), however continuous measurements have not yet been analysed from 

this site. The utility of flask data is limited and cannot reliably be used for event analysis due 

to the relatively low frequency of the data. The comparisons in previous analyses show a 

changing gradient between Mace Head and Lutjewad, the Netherlands. The CO2 mole 

fraction is becoming relatively higher at Lutjewad compared to MHD and the O2 

concentration relatively lower (van der Laan et al., 2014). There has been relatively little 

work on constraining seasonal variability. This project will utilise a 13 month continuous 

dataset of atmospheric CO2 and O2 measurements. The higher temporal resolution provides 

insight into ocean processes over smaller spatial and temporal scales. This project will 

investigate the seasonal variability of ocean carbon cycle processes in the North Atlantic and 

attempt to detect and attribute causes for atmospheric events.   
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2. Objective and Aims 

 

This project will investigate the spatial and temporal variability of oceanic carbon cycle 

processes using atmospheric CO2 and O2 measurements that have been collected from the 

Mace Head Atmospheric Research Station, Ireland. This will lead to the overall objective of 

using atmospheric observations to better understand ocean carbon cycle processes. 

 

The overall objective will be achieved by carrying out the following aims: 

1. Characterisation of the seasonal cycle of CO2, O2 and APO, using time series curve 

fitting programs; 

2. Investigation of the contribution of ocean sources within the seasonal cycles with the 

aim of identifying the signals of different marine processes; 

3. Detection and attribution of atmospheric 'events' that illustrate oceanic processes. This 

will be achieved by: 

o using air mass footprint analysis and back trajectory analysis; 

o using satellite ocean colour data to identify areas of high marine productivity 

o using mixed layer depths and dissolved oxygen concentration datasets to 

identify area of upwelling; 

4. Calculation of the air-sea fluxes causing the atmospheric 'events' using atmospheric 

data from Mace Head; 

5. Comparison of these fluxes to the fluxes derived from to external data such as 

modelled Net Primary Productivity (NPP) in order to determine to what extent such 

datasets can be a predictor of APO and ocean carbon cycle variability. 
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3. Methodology 

Continuous atmospheric measurements were collected from the Mace Head Atmospheric 

Observatory, situated on the west coast of Ireland 

(53° 20' N, 9° 54' W) (Figure 3). The gas handling 

system is shown in Figure 4. Air is sampled from 

two intakes and dried using two water traps. The 

system is maintained at a constant temperature and 

pressure. The CO2 analyser used is the Siemens 

Ultramat 6E analyser and a Sable Systems Oxzilla 

II is used to measure O2. Extensive diagnostic data 

is collected throughout the system including 

temperatures, pressures and flow. The system is 

calibrated against three calibration cylinders with 

known concentrations of CO2 and O2. CO2 

measurements are referenced to the WMO X2007 

scale. 

 
Figure 4: gas handling diagram of the atmospheric CO2 and O2 measuring system at Mace Head showing 

the two air inlets (blue and red lines), water traps (DC1, DC2, DC3, DF1 and DF3), analysers and 

calibration gases (ZT, WT). P indicates a pressure transducer, F indicates a flow meter, V a valve and RE 

a regulator. 

 

Atmospheric O2 is measured as the δ(O2/N2) ratio with units of "per meg", using the Equation 

1: 

 

 δ(O2/N2) = ((O2/N2)sample/(O2/N2)reference) -1     (Equation 1) 

 

Figure 3: Map showing the location of Mace Head 
Atmospheric Observatory (Google, 2009; 
GeoBasis-DE/BKG, 2015). 
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The equation assumes N2 to be constant as it has a very high abundance in the atmosphere 

and is stable, with relatively small fluxes. We report O2 using this method because changes in 

the concentration of trace gases such as CO2 will affect the mole fraction of O2, possibly 

leading to erroneous conclusions about O2 fluxes because of observed changes in the O2 mole 

fraction. A 1 ppm change in CO2 mole fraction is equivalent to a 4.8 per meg change in O2 

(Keeling and Manning, 2014). At Mace Head, O2 measurements are referenced to the Scripps 

Oxygen scale. 

 

APO is calculated using Equation 2: 

 

 ���� = � �
��

��
� + 1.1 × (���� − 350)/0.2094   (Equation 2) 

 

where 1.1 is the O2:C molar exchange ratio for the land biosphere; XCO2 is the CO2 mole 

fraction in dry air in ppm; 350 is an arbitrary value, and 0.2094 is the conversion factor for 

mole fraction to per meg units (Stephens et al., 1998). As discussed in the Introduction, APO 

is designed to be conservative with respect to the terrestrial biosphere through the use of the 

molar exchange ratio. The calculation of APO therefore enables us to determine the spatial 

and temporal patterns of air-sea fluxes of O2 and CO2 (Stephens et al., 1998). 

 

The atmospheric data were flagged to remove bad air sample data. I used weekly, daily and 

hourly plots of CO2, O2 and APO and diagnostic data of the raw two-minute averages 

produced from an Interactive Data Language (IDL) program written by my supervisor 

Andrew Manning. These plots were examined visually and against diagnostic and calibration 

data. In some cases where bad calibrations had occurred, I was able to recover data by 

adjusting the data based on information recorded during calibrations. Once all the data was 

quality checked I applied the flags to the data using a R script written by Penelope Pickers. I 

made a number of modifications to the script to fit my dataset. I also wrote some R code to 

produce *.csv files of the two-minute data and hourly averages of the flagged data.  

 

In order to separate out the seasonal cycle from the data, the baseline (unpolluted) data must 

be defined. Two methods were used to identify the baseline data in order to improve the 

robustness of the results. The first method used was statistical and utilised a script written by 

Penelope Pickers. Firstly the "rfbaseline" function from the IDPmisc package (Locher et al., 

2012) in R is used to calculate the statistical baseline of the data. This method is also known 

as robust extraction of baseline signal (REBS) and was developed by Ruckstuhl et al. (2001, 

2012). The advantage of this method is that it is non-parametric and uses an asymmetric 

distribution of the residuals of the LOESS (Locally Weighted Scatterplot Smoothing) fit. As a 

result the baseline is not biased by large pollution spikes occurring in one direction. Using 

this function, residuals of the baseline are calculated and the data are flagged if the residuals 

are a certain number of standard deviations away from the calculated baseline.  

The second method is based on meteorological data. I used hourly averaged meteorological 

data collected at Mace Head and provided to me by Michel Ramonet (Laboratoire des 

Sciences du Climat et de l'Environnement (LSCE), France). I wrote an R script to read in the 
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meteorological data, combine it with the hourly averaged atmospheric measurements and 

split the data into 'baseline' or  'polluted' based on wind speed and direction. I used the 

Bousquet et al. (1996) restricted baseline conditions which have been used in several 

atmospheric studies of Mace Head data (Derwent et al., 2002; Sirignano et al., 2010; van der 

Laan-Luijkx et al., 2010). Data were defined as 'baseline' if the wind direction was between 

210° and 290° and the wind speed was over 4 m s-1 or if the wind direction was between 200° 

and 300° and the wind speed was over 8 m s-1 (Bousquet et al., 1996).  

 

Hourly averaged baseline data were then used for time series decomposition. This process 

separates out the long-term trend, the seasonal cycle, and any irregular variations in the 

timeseries. As demonstrated by Pickers and Manning (2015), it is important to use more than 

one curve fitting method in order to eliminate possible bias. I used three methods; STL 

(Seasonal Trend decomposition using LOESS, CCGCRV (Carbon Cycle Group CuRVe) and 

HPspline (Harmonic, Polynomial, spline). STL is a moving average technique with an inner 

and an outer loop which runs iteratively until the approximations of the trend and seasonal 

components converge (Cleveland et al., 1990).  HPspline is a parametric curve-fitting 

program written in Fortran. It involves three routines in Numeric Recipes in Fortran (Press et 

al., 1996) and involves fitting data to a harmonic function, a polynomial equation and a stiff 

cubic spline (Reinsch, 1967). HPspline was run with two harmonics because my dataset is 

relatively short. CCGCRV is a digital filtering curve fitting program written in IDL. It fits a 

polynomial equation combined with a harmonic function and then filter the residuals using a 

Fast Fourier Transform (FFT) (Thoning et al., 1989). Further details on all three curve-fitting 

programs can be found in Pickers and Manning (2015). Three years of data were required for 

STL and CCGCRV to produce output and so I also used three years data for HPspline for 

consistency. This was achieved by generating artificial data for calendar years 2013 and 2015 

by using the long term trend observed at Weybourne, Norfolk, as this station is close in 

location, and similarly situated on the coast (Wilson, 2013). I ran STL in R, using a script 

written by Zoe Fleming (National Institute of Water and Atmospheric Research (NIWA)) and 

Penelope Pickers. In order to run STL the data had to be interpolated as the version in R 

cannot run on unevenly spaced data. This was achieved using an R script. Penelope Pickers 

kindly ran CCGCRV and HPspline on my data for me. The decomposition of the timeseries 

produces a trend, the detrended seasonal cycle and residuals. The curve fit is the trend plus 

the detrended seasonal cycle. I calculated the seasonal cycle amplitudes from the detrended 

seasonal cycle. 

 

For all events the oxidative ratio was calculated. This is the molar ratio of O2:CO2 during the 

event. The ratio can be used to characterise the carbon cycle process that caused the event, for 

example fossil fuel burning has a global average ratio of 1.4, although different fuels have 

different ratios due to their chemical composition (van der Laan et al., 2014). The oxidative 

ratio can be calculated by plotting the two minute data of CO2 and O2 concentrations against 

each other and calculating the least squares linear regression. The ratio is the slope of the line.  
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3.1 Event analysis 

 

I detected events visually based on the CO2, O2 and APO mole fractions. As this project is 

focussed on ocean carbon cycle processes, I only selected events with APO excursions.  For 

each event I produced plots of O2 against CO2  in R and calculated the regression line.  

To analyse atmospheric events I carried out air mass back trajectory analysis to determine 

where each air mass had travelled from before arriving at Mace Head. HYSPLIT (Hybrid 

Single-Particle Lagrangian Integrated Trajectory) produces back trajectories for air particles 

using existing meteorological data (Draxler and Hess, 1998). This is a simple Lagrangian 

atmospheric transport model and does not include factors such as turbulence (Fleming et al., 

2012). HYSPLIT is available to run online (http://ready.arl.noaa.gov/HYSPLIT_traj.php) and 

takes only a few minutes to run. I therefore used this for the initial check, and also for the 

majority of my event analysis. For a few of the most interesting events, the Met Office's 

Numerical Atmospheric Dispersion Modelling Environment (NAME) was used (Jones et al., 

2007; Ryall and Maryon, 1998). NAME is a Lagrangian Particle Dispersion Model that is 

driven by 3D meteorological data. In contrast to simpler models atmospheric turbulence is 

included in the simulation by using a random walk technique (Manning et al., 2011).  

10,0000 inert trace particles are released at each three hourly interval and NAME produces an 

integration of the number of particles per grid cell over the duration of the run (Fleming et al., 

2012). The UEA supercomputer has NAME functionality and Penelope Pickers ran NAME to 

produce footprints. An example is shown in Figure 5. NAME was run in backwards mode for 

three days at three-hour intervals for the day of the event and the days preceding and 

following the event. This provides context for the event. The resolution is 0.25° latitude by 

0.25° longitude. Events that showed a terrestrial origin were removed from further analysis. 

 
Figure 5: a NAME air mass footprint showing the origins of the air arriving at Mace Head on 01 June. 
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3.1.1 Productivity-related events 

 

Marine productivity is the most likely cause of positive APO excursions above the baseline. 

In order to detect productivity related events I used MODIS (Moderate Resolution Imaging 

Spectroradiometer) Aqua ocean colour data which is available from Oregon State University 

and can be used to derive estimates of primary productivity (OSU, 2014). Ocean colour can 

be used as a proxy for the amount of chlorophyll-a in the surface waters. Modelling is 

required to obtain information about sub-surface waters and productivity estimates. I used 

eight-day average Net Primary Productivity (NPP) datasets (Figure 6) modelled from satellite 

data using the Vertically Generated Production Model (VGPM) (Behrenfeld and Falkowski, 

1997), which is a commonly used productivity model. The spatial resolution is 0.2° latitude 

by 0.2° longitude (OSU, 2014). 

 
Figure 6: NPP derived from ocean colour satellite data modelled with the VGPM for 25/05/2014 

to 01/06/2014 

 

To combine the air mass back trajectories and the NPP images I used a piece of software 

called SeaDAS available from the National Oceanic and Atmospheric Administration, USA 

(NOAA) (http://seadas.gsfc.nasa.gov/installers/). I used this software to overlay the back 

trajectories onto the NPP images and calculate the mass flux, similar to the method used by 

Barningham (2013). I followed a version of the Yamagishi et al. (2008) method of estimating 

the NPP from the satellite image. Yamagishi et al. (2008) took the difference between the 

bloom NPP and the surrounding NPP i.e. the change in NPP, to be comparable to the change 

in observed APO at the station. This is difficult to keep consistent and also not possible to 

calculate for a wider area in SeaDAS. So as an approximation of this method I took the 

difference between the maximum NPP and the mean NPP within the back trajectory area. 

Any events that did not correlate with an area of relatively higher productivity were removed 

from further analysis. 

To calculate the air-sea flux required to produce the APO change observed at Mace Head 

during events I used the Jacob (1999) ‘Puff’ model (Equation 3). This can be used to 

calculate the flux of a gas into a moving column of air (in mol m-2 yr-1), and has been used in 

multiple studies (Lueker, 2004; Thompson et al., 2007; Yamagishi et al., 2008) to calculate 

air-sea flux of O2: 
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���� =  
�� .�

�[�����(��/��)]
         (Equation 3) 

 

where ΔC is the change in atmospheric concentration within the column (in mol m-3), h is the 

vertical mixing height obtained from HYSPLIT (http://ready.arl.noaa.gov/READYamet.php) 

(in metres), L is the wind fetch estimated by importing the HYSPLIT trajectory into Google 

Earth and measuring using the measuring tool (in metres), u is the average wind speed within 

the back trajectory area obtained from the NOAA sea winds dataset 

(https://www.ncdc.noaa.gov/data-access/marineocean-data/blended-global/blended-sea-

winds, Zhang et al., 2006a; Zhang et al., 2006b) (in m yr-1) and t is an e-folding lifetime 

representing atmospheric mixing within the column (in years). t is calculated using Equation 

4: 

 

� =  
∆�/�

∆�/��
                                                         (Equation 4) 

 

where te is the duration of the event. 

 

Equation 3 gives the flux in mol m-2 yr-1. I used the O2:C exchange ratio of 1.4 (Laws, 1991) 

and assumed steady state conditions for the net community productivity to convert the flux 

into units comparable with the ocean colour data (mg C m-2 day-1). 

 

I also investigated the relationship between the flux as calculated above and the O2 flux 

calculated from ocean heat fluxes. The NEMO (Nucleus for European Modelling of the 

Ocean) PlankTOM (Plankton Types Ocean Model) model produces heat fluxes and oxygen 

fluxes from the ocean (Blaine, 2005). Pickers et al. (2015) used the NEMO PlankTOM model 

coupled with NAME to produce modelled changes in APO and investigated whether this 

model captured observed negative excursions in APO. The data are at a daily resolution and a 

spatial resolution of 2° by 2°. These data were provided by Corinne Le Quéré (Tyndall 

Centre, UEA). 

 

3.1.2 Ventilation events 

 

Negative APO excursions from the baseline are most likely due to ventilation or upwelling 

events which are indicated by a deeper ocean mixed layer. I followed the Barningham (2013) 

method to design a conceptual model to investigate these events. I used mixed layer depth 

(MLD) data obtained from Argo floats (http://www.Argo.ucsd.edu/), and the change in 

dissolved oxygen concentration to calculate an air-sea flux. Argo floats produce depth 

profiles of variables including temperature, salinity and pressure.  The accuracies of the 

temperature, salinity, and pressure sensors on the Argo floats are ±0.005°C, ±0.01 psu, and 

±2.4 dbar, respectively (Argo Science Team, 2001).  The floats sink to a set parking depth 

and then float freely. Every ten days the floats ascend to the surface, measuring continuously. 

These measurements are transmitted via satellites and are available, averaged to standard 
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depth levels (Dong et al., 2008). The MLD is calculated using potential density and potential 

temperature. I used the Hosada et al. (2010) data of MLD, temperature and salinity 

(www.jamstec.go.jp/e). The dataset comprises high quality Argo float data at 2° by 2° spatial 

resolution. MLD is calculated using the threshold difference method. They provide two 

datasets: one with the MLD calculated using temperature, and the other using salinity. In both 

cases they assume a shallow iso-thermal or iso-pycnal layer respectively and use the finite 

difference method to calculate this (Hosada et al., 2010). Using these data I found the mean 

and maximum MLD within the area of influence from the HYSPLIT back trajectory, using 

the SeaDAS software package. Any events with a shallow mixed layer (50m or less) were 

removed from analysis. 

 

I then used dissolved O2 data from the World Ocean Database 

(https://www.nodc.noaa.gov/OC5/WOD13) to see if the APO-derived flux was possible or 

likely to occur in the area of influence. I used the software package Ocean Data View (ODV) 

to view the files. ODV is available from the Alfred Wegner Institute (http://odv.awi.de) and 

is designed specifically for oceanographic datasets. I used two complementary methods of 

calculating the ΔpO2. Firstly I used PFL (profiling floats) data and found floats that were 

within the area of influence during the duration of the back trajectory. I calculated the change 

in pO2 between the MLD (as determined above) and the surface for all floats. When 

determining which floats to use, I considered the position of the air mass over time during the 

duration of the back trajectory.  The second method to calculate the ΔpO2 utilised monthly 

mean pO2 from the World Ocean Atlas 2013 

(https://www.nodc.noaa.gov/OC5/woa13/woa13data.html). These are data from different 

sources averaged together at standard depths. I calculated the ΔpO2 as the change in pO2 

between the MLD and the surface. I chose to used these two methods because the PFL data is 

real time data and therefore should give a more realistic picture for short-term events, 

however the coverage is very sparse and therefore the results are less reliable. The average 

monthly dataset incorporates a large amount of data and is interpolated to provide full ocean 

coverage, however it is a climatology and therefore has limited use when considering short 

term atmospheric events. 

I then used the calculated change in dissolved O2 concentration  to calculate the air-sea flux 

that would result. I used the following equation from Garcia and Keeling (2001) and 

Wanninkhof (1992): 

 

���� =  �. ���. �[��]        (Equation 5)  

 

where ρ is the density of the seawater (g cm-3) (I chose to use the mean density of seawater, 

1.025 g cm-3), Δ[O2] is the oxygen anomaly (mol m-3), and kO2 is the gas transfer velocity for 

O2 (m yr-1), which is calculated using Equation 6, from Wanninkhof (1992): 

 

��� = 0.39��(
����

���
)�

�

�       (Equation 6) 
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where u is the wind speed in m yr-1 and ScO2 is the Schmidt number for O2. I calculated ScO2 

using Equation 7 from (Wanninkhof, 1992): 

 

���� = 1953.4 − 128� + 3.9918�� − 0.05009��    (Equation 7) 

 

where T is sea surface temperature (SST) in °C. The oxygen anomaly, Δ[O2], from Equation 

5 is calculated using Equation 8, from Garcia and Keeling (2001): 

 

Δ[��] = [��] − [��]∗ +  �����      (Equation 8) 

 

where [O2] is the measured dissolved O2 concentration of the sea water calculated from Argo 

data as described above, [O2]* is the O2 solubility, and δskin is the skin temperature correction. 

The value of δskin is in general very small (about ± 0.001 mol m-3), therefore I have not 

applied this correction. [O2]* is calculated using Equation 9 from Garcia and Gordon (1992): 

 

ln[��]∗ =  �� + ���� +  ����
� +  ����

� +  ����
� +  ����

� +  ����
� + ���� + ���� +

 ����
� +  ����

�) +  ����       (Equation 9) 

 

where S is salinity in psu, and A0 to A5, B0 to B3 and C0 are constants from Garcia and 

Gordon (1992).  

 

Ts is given by Equation 10, also from Garcia and Gordon (1992): 

 

�� = ln [(298.15 − �)(273.15 + �)��]     (Equation 10) 

 

where t is the seawater temperature in °C.  

 

Equation 5 produces an air-sea flux value that can be compared to the APO-derived flux 

value. 

 

The temperature, salinity and density values used in Equations 5 to 10 are taken from the 

MLD dataset based on Argo floats from Hosada et al. (2010) available at 

www.jamstec.go.jp/e. I used averages within the back trajectory area, calculated by importing 

the NetCDF files into SeaDAS and overlaying the back trajectory. I calculated the APO-

derived flux following the same method as above. 
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4. Results and Discussion 
 
4.1 Introduction 
 
In this section I will present my results and discuss wider ocean carbon cycle relevance, and 
relevance to the literature. The hourly averaged data are plotted in Figure 7. The standard 
deviations of the two minute averaged data and of the calibrations provide an indication of 
error (Table 1). O2 is clearly more variable than CO2. 
             
 

Two-minute 
averaged data 

Target 
Tank 
Calibrations 

Zero Tank 
Calibrations 

CO2 (ppm) 0.034753 0.06296 0.08585 
O2 (per meg) 14.005 7.926 7.569 
Table 1: standard deviations of the raw data, and two calibration readings. (APO is a calculated variable 
and therefore not included). 
 

This section will present results and discuss the curve fits and baseline data, the detrended 
seasonal cycles of CO2, O2 and APO, atmospheric event characteristics, and evaluate the 
conceptual models for both productivity and ventilation events. 
 
4.2 Curve fits 
 
The hourly averages were plotted against all three curve fits. The results are similar overall. 
CCGCRV appears to be more sensitive to short-term variability. STL has several anomalies 
which may be due to the use of lower frequency data (weekly/monthly) as this program does 
not run well on high frequency data. The curves produced do not fit along the bottom (for 
CO2) or top (for O2 and APO) of the data as would be ideal. For the statistically derived 
baseline, the rfbaseline function did not fit perfectly along the bottom (top) for the full data; 
for CO2 (O2 and APO)  it always fits slightly below the bottom of the data in the spring and 
above in the autumn/winter. This led to issues with choosing the standard deviations used in 
the second part of the baseline process. A compromise had to be taken between flagging 
actual baseline data as polluted during the spring and leaving polluted data within the 
baseline data in the autumn. This means that the baseline data used to produce the curve fits 
is not an entirely accurate representation of the baseline observations at Mace Head, and the 
curve fits appear slightly polluted. However, this problem is also present in the curve fits 
based on meteorological baselines, which does not involve the use of the rfbaseline function. 
Therefore there is a wider problem with the curve fits. In the future I would look into this 
problem in more depth and produce a more accurate baseline. 
 
Another limitation or source of error within the baseline and curve fitting procedure is the 
value used to force a trend in the duplicated data. This value was taken from a previous study 
using Weybourne data, due to the similar latitude and coastal location. However Weybourne 
does receive slightly more terrestrial air masses due its location and therefore the log-term 
trend at Weybourne could be higher than the actual trend at Mace Head. Despite the trend of 
2.41 ppm for CO2 forced through the duplicated data, the average trend calculated by the 
curve fitting programs is 2.11  ppm. For O2, a trend of -25.3 per meg was applied to the 
duplicated data, compared to an average of -23.98 per meg produced by the curve-fitting 
programs. This suggests that the real trend within the data is smaller than the trend forced. 
Although I am not analysing the trend due to the short term dataset, this could impact the 
curve fits.  
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4.3 Seasonal cycles 
Figures 9, 10 and 11 show the detrended seasonal cycles derived from the statistical baselines 
for CO2, O2 and APO. CO2 and O2 are clearly inversely correlated as is expected. The CO2 
seasonal cycle has a minimum in August and a maximum in April. The timing correlates well 
with previous studies using flask measurements at Mace Head (Sirignano et al., 2010; van der 
Laan-Luijkx et al., 2010). The shape of the STL seasonal cycle is anomalous, although the 
timing of the maximum and minimum is not greatly affected. HPspline produces the 
smoothest curve, and is most similar to the seasonal cycle produced by van der Laan-Luijkx 
et al. (2010), potentially due to similar curve-fitting methods. The shape and timing of the 
seasonal cycle is due to processes in the terrestrial biosphere. In the summer, solar insolation 
is stronger and photosynthesis dominates the terrestrial biosphere.  Photosynthesis requires 
CO2 and produces O2: 
 
 CO2 + H20 --> CH2O +O2  
 
Convective mixing of the atmosphere is also stronger because the PBL is higher. These 
factors combine to cause a lower CO2 mole fraction during the summer. In the autumn and 
winter solar radiation is weaker and respiration dominates. The PBL is lower and mixing is 
weak and infrequent. The CO2 mole fraction therefore reaches its peak. A similar cycle 
occurs diurnally, especially during the summer when the PBL is more variable.  
 

 
Figure 9: Detrended seasonal cycle of CO2 produced by CCGCRV, HPspline and STL for the statistical 
baseline. 
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Figure 10: The detrended seasonal cycle of O2 produced by CCGCRV, HPspline and STL for the 
statistical baseline. 
 

The O2 minimum occurs in March, slightly earlier than the absolute peak in CO2 values, and 
the maximum occurs in August, correlating well with the CO2 minimum (Figure 9). This 
timing is the same as the results from Sirignano et al. (2010), however van der Laan-Luijkx et 
al. (2010) find an earlier minimum during February. The STL seasonal cycle has similar 
anomalies to the CO2 seasonal cycle and HPspline is again the smoothest curve. The 
CCGCRV seasonal cycle has an unusually abrupt peak. 
 
O2 seasonality is primarily controlled by the ocean because all the ocean processes reinforce 
each other in one season. However, the terrestrial biosphere also has an effect, as the 
processes discussed above have an inverse effect on the O2 concentration. There are also 
small effects from fossil fuel burning seasonality, atmospheric transport, wind speed (which 
influences the air-sea gas exchange) and the supply of productivity-limiting nutrients. There 
are three ocean processes that influence O2: productivity, ocean upwelling or ventilation, and 
temperature. Respiration, which requires O2, is dominant in the marine biosphere during the 
winter resulting in greater uptake of O2. Ocean mixing during the winter mixes O2-poor 
subsurface waters with surface waters, leading to uptake of O2 from the atmosphere. Surface 
waters are colder and therefore more highly soluble for gases; this also creates more uptake 
of O2. During the summer these processes reverse: stratified waters prevent mixing and create 
a higher pO2 in the surface waters; warmer waters are less soluble; and photosynthesis 
produces O2 in the surface waters further increasing the pO2.  
 
The APO meteorologically-derived baseline appears polluted, and therefore I have chosen to 
use only the statistically-derived seasonal cycles (Figure 11). The detrended seasonal cycles 
produced by HPspline and STL are quite similar with maxima in July and minima in 
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February. The CCGCRV seasonal cycle has less of a smooth curve, with a secondary peak in 
June before the maximum in September. The minimum occurs in February, as in HPspline 
and STL. As APO is designed to be conservative to the terrestrial biosphere, the seasonal 
cycle reflects the seasonal cycle of ocean carbon cycle processes. On seasonal timescale, 
these processes have a greater impact on the atmospheric O2 mole fraction and therefore the 
APO seasonal cycle is quite similar to the O2 seasonal cycle. The maximum in July reflects 
marine productivity and the minimum in February reflects greater mixing and uptake of O2. 
Subduction of surface waters also occurs during the winter, in the north-east Atlantic, and 
may also contribute to the seasonal cycle (Karleskind et al., 2011).  
 

 
Figure 11: The detrended seasonal cycle of APO produced by CCGCRV, HPspline and STL for the 
statistical baseline. 

 
van der Laan-Luijkx et al. (2010) find a secondary peak in the APO seasonal cycle which is 
very similar to the CCGCRV seasonal cycle. Neither STL or HPspline cycles show this 
feature. The curve-fitting technique used by van der Laan-Luijkx et al. (2010) is a 
combination of three-harmonics and a linear trend. 
 
I calculated the seasonal peak-to-trough amplitudes of the detrended seasonal cycles 
(maximum seasonal value minus the minimum seasonal value). As I have six curve-fits, three 
from statistical-derived baselines and three from meteorological-derived baselines, I 
calculated the standard deviation of the six values (Table 2). The seasonal amplitude of APO 
is slightly over half the seasonal amplitude of O2. This agrees with previous findings from 
Mace Head data (van der Laan-Luijkx et al., 2010). 
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 CO2 amplitude (ppm) O2 amplitude (per meg) APO amplitude (per meg) 
Statistically 

derived 
baseline 

Meteorologi
cal derived 

baseline 

Statistically 
derived 
baseline 

Meteorologi
cal derived 

baseline 

Statistically 
derived 
baseline 

Meteorologi
cal derived 

baseline 
CCGC
RV 

18.7 20.2 145.6 157.6 77.9 77.1 

Hpsplin
e 

15.6 16.0 140.4 143.8 71.2 74.7 

STL 15.8 20.4 141.2 165.2 69.4 89.1 
Mean 16.7 

(±1.73) 
18.9 

(±2.47) 
142.4 

(±2.78) 
155.6 

(±10.8) 
72.8 

(±4.51) 
80.3 

(±7.71) 
Overall 
Mean 

17.783 (±2.25) 148.9667 (±10.1) 76.5667 (±6.97) 

Table 2: The seasonal cycle amplitudes of CO2, O2 and APO calculated from the detrended seasonal 
cycles produced by three different curve fitting programs and using two baseline datasets. 
 

CCGCRV produces the largest seasonal amplitudes for all species when using the statistical 
baselines, however when using meteorological-derived baselines STL produces the largest 
seasonal amplitudes, again across all species. This suggests that the two methods of defining 
the baseline produce data with features more likely to be emphasised by one curve fitting 
program. The meteorological-derived seasonal amplitudes have a larger standard deviation. 
Fang et al. (2015) suggest that meteorological methods to determine the baseline are best. 
However they use a more complex method involving daytime data only to compensate for the 
effect of the varying height of the PBL, in addition to wind direction and wind speed. They 
also use data from an inland station in their study, and as Mace Head is a coastal station there 
are different factors to consider. 
 
Station Mace 

Head 
(van der 
Laan-
Luijkx et 
al., 2010) 

Shetland 
Islands 
(Kozlova 
et al., 
2008) 

Weybourne, 
Norfolk 
(Wilson, 
2013) 

F3 North 
Sea Oil 
Platform 
(van der 
Laan-
Luijkx et 
al., 2010) 

Lutjewad, 
Netherlands 
(van der 
Laan-Luijkx 
et al., 2010) 

Ochsenkopf, 
Germany 
(Thompson 
et al., 2009) 

Location 53.33°N, 
9.9°E 

60.28°N, 
1.28°W 

52.95°N, 
1.12°E 

54.85°N, 
4.73°E 

53.4°N, 
6.35°E 

50.03°N, 
11.8°E 

Period 1998-
2009 

2004-
2008 

2009-2012 2006-
2009 

2000-2009 2006-2008 

CO2 
amplitude 
(ppm) 

14.0 ±0.3 15.4 14.9 ±0.8 15.2 ±0.1 12.0 ±0.6 15.46 ±1.04 

O2 
amplitude 
(per meg) 

142  ±6 163 134.2 ±7.8 144 ±2 114 ±8 134.6 ±6.8 

APO 
amplitude 
(per meg) 

74 ±6 95 59.0 ±5.6 111 ±2 64 ±6 43.1 ±3.3 

Table 3: Summary of seasonal cycle amplitudes of CO2, O2 and APO for north-western European stations 
of similar latitudes. After Wilson, 2013. 
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I compared the seasonal amplitudes with a range of datasets from north-western Europe from 
Wilson (2013) (Table 3). I found that the CO2 seasonal amplitude is larger than in previous 
data from Mace Head, and larger than in all the data collected by Wilson (2013)  including 
the continental site of Ochsenkopf, Germany. This is unexpected as continental sites are 
influenced more by the land biosphere, which is the main driver of CO2 seasonality. 
However, the Ochsenkopf average is based on only a three year timeseries and therefore is 
less reliable than other data compared to. The standard deviation is an order of magnitude 
higher than these. van der Laan (2014) found a changing gradient between Mace Head and 
Lutjewad, Netherlands. CO2 is increasing in Lutjewad relative to Mace Head, and this may be 
impacting the seasonal amplitude. 
 
The O2 seasonal amplitudes derived from statistical baselines are similar to the previous 
MHD value, and the value at the F3 oil platform which is also a very ocean influenced 
station. The seasonal amplitudes from the meteorological baseline are all larger, approaching 
the value at the Shetland islands, which is more influenced by the ocean. The mean seasonal 
amplitude is slightly larger than the amplitude at the F3 oil platform. The standard deviation 
is similar to the data from Wilson (2013).  
 
The APO seasonal amplitude from statistical baselines is similar to the previous Mace Head 
value, though slightly lower, perhaps suggesting that there is slightly less ocean variability 
during 2014-2015 compared to the average over 1998-2009. The meteorologically-derived 
APO baseline appears to be more polluted than expected, and therefore the seasonal 
amplitudes may not be reliable. The seasonal amplitudes are higher than statistically-derived 
values and approach the value obtained at the Shetland islands (Wilson, 2013). 
 
4.4 Atmospheric Events 
I identified 11 positive APO excursions and five negative APO excursions of oceanic origin. 
Identification of events is limited by standard deviation; during periods of more variable data, 
events are less likely to be detected. For some events further analysis was not possible due to 
lack of data. The events analysed are presented in Table 4. Six productivity-related 
atmospheric events were identified within the time period of available satellite image data 
(March-October 2014). These events vary in duration and magnitude. The duration of events 
ranges from 2.5 hours to 15.6 hours and this is likely related both to the phytoplankton bloom 
and atmospheric transport. The magnitude of APO change during events ranges from 22.0 per 
meg to 57.3 per meg. The areas of influence for NPP events cover the whole baseline/ocean 
sector of the Mace Head air masses, showing that phytoplankton blooms are not limited to 
one area. However, with the small sample size available it is not possible to tell whether 
productivity events originate more frequently from a particular region. 
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Date Duratio
n 

(hours) 

ΔAPO (per 
meg) 

Productivity (P)/ 
Ventilation (V) 

04 March 2014 1.73 -15.47 V 
05 April 014 15.58 36.97 P 
01 June 2014 5.90 44.51 P 
02 July 2014 10.00 29.31 P 
19 July 2014 2.50 35.69 P 
19 August 2014 3.17 30.51 P 
30 October 2014 2.17 21.98 P 
02 November 2014 6.97 -26.82 V 
12 January 2015 0.60 -36.61 V 
14 January 2015 2.10 -29.95 V 
04 February 2015 3.00 -32.95 V 
Table 4: atmospheric events of oceanic origin including the duration of the event at Mace Head, the 
change in APO over that time and the ocean carbon cycle process that was determined to be the likely 
cause. 

 
I identified five ventilation events within the dataset (Table 5). These events only occur 
between the months of November and March. The duration of the events ranges from 40 
minutes to 7 hours. The magnitude of the APO change during the events ranges from -15 per 
meg to -37 per meg. The maximum magnitude of ventilation fluxes is smaller than the 
maximum magnitude of productivity-related fluxes. The areas of influence for the ventilation 
or upwelling events again cover a wide area of the ocean sector of Mace Head, however the 
small sample size limits the strength of conclusions. 
 
There are also ten events not included in Table 5 that, based on the HYSPLIT air mass back 
trajectory, are of local origin but still show an APO excursion. The aim of my project is 
focussed on marine processes rather the terrestrial biosphere which will likely have a 
significant influence on these events, and therefore these events have not been analysed. This 
could potentially be a focus for future research. Studying these events could give insight into 
coastal ocean carbon cycle processes, although satellite data is often more difficult to obtain 
for coastal regions. 
 
4.4.1 Seasonal distribution of atmospheric events 
As mentioned above there is a seasonality in the distribution of events; ventilation events 
have been detected between November and March, and productivity events were detected 
between April and October. These conclusions are limited by gaps in the data and periods of 
high standard deviations, in addition and a lack of satellite data for NPP from November to 
February. Six positive APO excursions were detected between December 2014 and February 
2015 which cannot be verified as productivity related due to the lack of satellite data. 
Therefore this distribution is not conclusive. However, ventilation is clearly seasonal and 
productivity events are concentrated in the spring and summer.  
 
This seasonality is also evident in the magnitude of events. Figure 12 shows the mean ΔAPO 
for the two types of events during each season. The seasonal distribution of events correlates 
well with the APO seasonal cycle, reflecting the dominant ocean carbon cycle process 
throughout the year. The largest productivity ΔAPO occurs during spring. This is to be 
expected as the "spring bloom" of phytoplankton is a well documented phenomenon and 
increased temperatures and solar radiation lead to a rapid increase in productivity. 
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Photosynthesis is no longer limited by temperature or solar radiation and therefore the 
nutrients mixed into the surface waters during winter are utilised (Yamagishi et al., 2008). 
The summer months also have a high productivity related ΔAPO, which is likely due to the 
same phenomenon at more northerly latitudes; in sub-polar regions such as the Labrador Sea 
the "spring bloom" occurs during May and June (Körtzinger et al., 2008). This does not 
contest the seasonality observed in the ventilation events, as the Argo float data are available 
all year round. 
 

 
Figure 12: Mean change in APO (per meg) due to productivity (NPP, blue) and ventilation (V, red) events 
for each season. 

 
The strongest ventilation events occur during the winter. High wind speeds and a deeper 
MLD lead to mixing of subsurface and surface waters. The subsurface waters are depleted in 
O2 and rich in carbon and nutrients. This creates a drawdown of O2 from the atmosphere to 
the ocean. Ventilation events also occur during the autumn and during the spring with a 
decreased magnitude. During the summer there are zero ventilation events. This is due to 
ocean stratification; a shallow MLD and relatively high SSTs prevent mixing and lead to 
surface waters with a low pCO2 and supersaturated PO2 (Patecki and Manning, 2007). 
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4.4.2 Oxidative ratios 
 
Date Oxidative ratio R2 

Productivity 
05 April 2014 -3.34 0.74 
01 June 2014 -14.01 0.45 
02 July 2014 -0.47 0.02 
09 July 2014 -3.74 0.51 
19 August 2014 -2.33 0.47 
30 October 2014 -1.37 0.87 

Ventilation 
04 March 2014 1.98 0.02 
02 November 2014 0.01 2 x 10-7 
12 January 2015 17.35 0.17 
14 January 2015 -2.44 0.08 
04 February 2015 -6.27 0.17 
Table 5: Oxidative ratios (O2:CO2) and associated R2 for all events 

 
Table 5 shows that the oxidative ratios of both productivity and ventilation events have a 
wide range, and the strength of correlation varies greatly between events. In general, 
productivity events have higher R2 values, indicating a stronger correlation between CO2 and 
O2 mole fractions than for ventilation events. The ratio values are quite similar, although 
three ventilation events are positive and all other ratios are negative. Thompson et al. (2007) 
suggest that positive oxidative ratios from ocean events are due to heat fluxes because this 
would have the same effect on both CO2 and O2 by changing the gas solubility of the sea 
water and therefore leading to outgassing or uptake of both gases, dependent on the direction 
of the change. Three of the ventilation events have positive oxidative ratios. The O2 fluxes 
from the NEMO PlankTOM model (Blaine, 2005) were plotted, using the GoogleMapsPlot 
function within the R Openair package (Carslaw and Ropkins, 2012), for the dates of the 
back trajectories for the 04 March and 02 November events. NEMO PlankTOM data are not 
available for 2015, therefore this analysis cannot be used for the 12 January event.  There is a 
relatively large heat flux within the region of the back trajectory for both events. For the 04 
March event the heat flux does not account for the entire flux calculated from the observed 
APO change, therefore the change in dissolved oxygen concentration due to upwelling is still 
likely to have contributed. It is logical for the two effects to occur concurrently as the 
upwelled subsurface water as well as having a lower dissolved O2 concentration, would also 
have a lower temperature. This could result in heat fluxes. The PFL data records a 
temperature of 3.87°C at the calculated MLD for the event (942 m) and a temperature of 
5.19°C at 4 m depth. The 02 November event shows an equally large heat flux, however there 
is no correlation between O2 and CO2 (R

2 of 2.0 x 10-7). This suggests that the other processes 
causing the observed APO excursion create a negative oxidation ratio which cancelled out the 
ratio due to the heat flux. As two further ventilation events have negative ratios, this seems 
plausible. In addition, ventilation events have a relatively low R2 values, compared to 
productivity, which would occur if ventilation and heat fluxes are acting in opposition with 
regard to the oxidative ratio. 
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Figure 13: Oxidative ratio plot for the 01 June event. CO2 is plotted against O2 in ppm equivalent 
(ppmEq), which is calculated by dividing the O2 value by 4.8.The least squares linear regression equation 
and associated R2 are included. 

 
All productivity events have negative ratios, which Thompson et al. (2007) also found. 
Photosynthesis causes O2 outgassing and CO2 uptake and therefore resulting in a negative 
O2:CO2 ratio. The observed APO change correlates strongly with the ratio; 01 June has the 
largest ratio (Figure 13) and the highest ΔAPO (-14 and 44 per meg respectively). 
 
4.4.3 Productivity events 
 
The fluxes resulting from the conceptual model and the Jacob (1999) puff equation (APO-
derived) are presented in Table 6. There is a wide range in the accuracy in the output of the 
conceptual model. Some events, e.g. 01 June, have fluxes which match quite closely, 
however other events have a difference of an order of magnitude between the two fluxes. 
There is no correlation between the two flux estimates, or between the difference between the 
estimates and any particular parameter in the flux equation, however the events with the 
longest durations in general have the smallest discrepancies. These events are the 05 April 
event, which lasted 16 hours and 02 July event (10 hours duration). This is likely related to 
the use of 8 day average NPP images, as longer events will be more likely to significant 
within the 8 day average. 
 
The events with the largest APO-derived fluxes are 09 July and 19 August. The APO-derived 
fluxes for these three events are an order of magnitude larger than all other NPP events. The 
events originate primarily from the west-south-west through to the north-north-west. This 
could suggest that strong blooms of phytoplankton occur in the northern Atlantic and 
southern Arctic oceans during this time period, although generally the height of marine 
productivity occurs earlier in the summer. Körtzinger et al. (2008) found a May/June spring 
bloom in the Labrador Sea, although more northerly latitudes could be slightly later. 
However, the satellite-derived fluxes are not of the same magnitude. The 19 August event 
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does have the second  highest satellite derived flux, however this is still an order of 
magnitude smaller, and the 09 July event has a much smaller satellite derived flux. This 
suggests that either other processes are causing the observed flux, or that the flux equation 
causes a more severe over estimation of the flux in these particular cases. Local coastal 
carbon cycle processes, which are poorly resolved by satellite imagery, may also be 
contributing to the observed APO excursions. Alternatively the conceptual model may be 
underestimating the flux in these cases. The area of the ocean over which the phytoplankton 
bloom or other productivity event is occurring has not been taken into account in my 
calculations, however it would logically impact the observed APO change at Mace Head. 
Using the maximum NPP value within the back trajectory may balance this out slightly, 
however this could account for the larger magnitude of the sea-air flux using the APO values. 
Visual analysis suggests this may be the case for the 09 July and 19 August events, however a 
more precise method should be developed in future research. 
 
Date Modelled flux (mg C 

m-2 day-1) 
Observed APO 
derived flux (mg C m-

2 day-1) 

Difference (modelled 
flux - APO-derived 
flux) (mg C m-2 day-

1)  
05 April 2014 2085  1143 942 
01 June 2014 3886  2354 1532 
02 July 2014 5113  5038 75 
09 July 2014 2674  39,197 -36,523 
19 August 
2014 

7826  60,133 -52,307 

30 October 
2014 

8669  4749 4120 

Table 6: Productivity events and the O2 air-sea flux calculated from the conceptual 
model and from the observed ΔAPO at Mace Head, and the difference between these 
two fluxes. 
 
NEMO-PlankTOM heat fluxes were added to the conceptual model in order to investigate 
whether they may have contributed to the observed ΔAPO (Table 6). Overall heat fluxes do 
not appear to have contributed to these events, which agrees with the oxidative ratios 
discussed above. Instead heat fluxes appear to be contributing to O2 outgassing, alongside 
photosynthesis, therefore increasing the discrepancy between modelled and APO-derived 
fluxes. The two exceptions are 09 July and 19 August, which have the two largest APO-
derived fluxes. For these two events, including the heat fluxes does reduce the difference 
between the two fluxes, however the model still does not explain the full magnitude of the 
event.  
 
For three productivity events I was able to use NAME air mass footprints in addition to 
HYSPLIT back trajectories. NAME is a much more complex atmospheric transport model 
and should therefore improve the accuracy of the conceptual model. All NAME outputs are 
different from the respective HYSPLIT outputs, although the different areas of influence only 
appear to have a significant impact on the modelled results of one event. The NAME 
footprint for the 05 April event is the most similar to the HYSPLIT trajectory; the wind 
direction is 10-20° different, however it is still focussed over a relatively small area. The 
NAME footprint for 06 April looks more similar to the HYSPLIT back trajectory for 05 
April. This could be due to the difference in temporal resolution or other parameters of the 
meteorological data used between NAME and HYSPLIT. The 01 June outputs follow a 
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similar pattern; the back trajectory and footprint are both focussed over a small area, however 
the actual area of influence and path of approach are some degrees apart. The NAME 
footprint for 02 July is however much more dispersed than the HYSPLIT trajectory for the 
same event. The fetch is therefore longer, however this has a negligible influence on flux 
calculations. Nevertheless the two areas of influence do intersect. These comparisons 
illustrate two differences in the modelling and data used. The first two events show a 
difference in wind direction causing a different area of influence to be modelled and the latter 
event suggests changes in wind speed in addition to wind direction and perhaps turbulence in 
the NAME model. 
 
In terms of effects on the modelled mass flux, the 02 July event is most effected as the 
NAME footprint covers a wider area and within that area of influence is a higher maximum 
modelled flux of approximately 10,000 mg C m-2 day-1. This is almost 4000 mg C m-2 day-1 

higher than that calculated from the HYSPLIT trajectory. Although the fetch is longer, this 
has only a small effect on the flux equation. The average wind speed is almost unchanged. 
Therefore the difference between the APO-derived flux and the modelled flux is 
approximately 4000 mg C m-2 day-1  larger. In contrast, the NAME footprint for the 01 June 
event produces a lower modelled maximum flux of 3062 mg C m-2 day-1 (compared to 4796 
mg C m-2 day-1 for the HYSPLIT trajectory). The average wind speed over the NAME 
footprint is 2 m s-1 lower which when rounded appropriately produces the same APO-derived 
NPP as the HYSPLIT back trajectory. The 05 April event again produces a lower modelled 
flux as the angle of approach, which means that the area of highest productivity is not within 
the area of influence. Therefore there is less discrepancy between the modelled and APO-
derived flux values. These results do show how a more complex atmospheric transport model 
can have an effect on the flux output.  However, given the discrepancies between the 
modelled and APO-derived fluxes it is difficult to make clear conclusions. It is suggested that 
future work should involve NAME or similar atmospheric transport models. 
 
NAME outputs have an advantage in that they are continuous fields whereas HYSPLIT back 
trajectories, are point type files, rather than vector lines. Therefore when calculating statistics 
from intersected fields, the values may not be a true representation, depending on the 
resolution of the data. For Argo floats data where the resolution is very coarse this will have 
little effect, however data such as the NOAA sea winds and the NPP have much higher 
resolution and so pixels may be missed in calculating statistics. 
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Figure 14: Plot of 2 minute averaged APO data during 01 June, showing the duration and magnitude of 
the event. 

 
I use the example of the 01 June event to work through the full analysis undertaken for every 
event. When the event has been identified visually, the exact duration and ΔAPO are 
calculated from the two minute data (Figure 14). The event is defined as from 15:06 until 
21:00, a duration of 5.9 hours, with a ΔAPO of 44.51 per meg. The event is characterised by 
a continuous increase of O2 mole fraction and a CO2 mole fraction that increases slightly and 
then decreases. HYSPLIT is then run to produce an air mass back trajectory to confirm an 
ocean origin of the air masses. Initially a 96 hour trajectory is run. This trajectory is imported 
into the SeaDAS software and overlaid onto the appropriate eight day average NPP image 
(Figure 15). Figure 15 shows a large area of high NPP in the ocean surrounding Mace Head, 
and the back trajectory intersects with this.  I used SeaDAS to calculate the mean and 
maximum NPP that the back trajectory intersects with. I followed a version of the Yamagishi 
et al. (2008) method of estimating the NPP from the satellite image. Yamagishi et al. (2008) 
took the difference between the bloom NPP and the surrounding NPP i.e. the change in NPP, 
to be comparable to the change in observed APO at the station. This is difficult to keep 
consistent and also not possible to calculate for a wider area in SeaDAS. As an approximation 
of this method I take the difference between the maximum NPP and the mean NPP within the 
back trajectory area. For 01 June this gives an NPP value 4796 - 910 = 3886 mg C m-2 day-1. 
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Figure 15: a) NPP derived from ocean colour satellite data modelled with the VGPM for 25/05/2014 to 
01/06/2014. b) screen capture from SeaDAS software showing the statistics calculated for the pixels in the 
NPP image which intersected by the 01 June back trajectory. 

 
The APO-derived flux is then calculated using Equation 3. This assumes that the change in 
APO is entirely due to productivity-related ocean processes, a reasonable assumption on short 
timescales (unless it is due to another ocean process). This involves calculating the mean 
wind speed within the back trajectory from the NOAA sea winds dataset (11.9 m s-1), the 
PBL from HYSPLIT (60 m) and the wind fetch from the back trajectory in Google Earth 
(2800 km). The resulting value has to be converted into a value comparable to the NPP, from 
mol m-2 yr-2 to a mass flux in units of mg C m-2 day-1. The resulting flux is 2354 mg C m-2 

day-1. This flux is 1531 mg C m-2 day-1 smaller than the flux produced by the satellite data. 
Yamagishi et al. (2008) found that their APO-derived flux estimates came within an order of 
magnitude of the satellite image derived fluxes, so this discrepancy is not uncommon, 
however other processes could also be affecting the ocean carbon cycle. Changes in 
temperature causes the solubility of gases in water to alter, which can lead to gas fluxes. The 
O2 fluxes produced from the NEMO PlankTOM model can be used to further refine the 
modelled flux. A maximum value of -0.1 mol m-2 day-1 occurs during the back trajectory. The 
negative flux denotes an air-to-sea flux, i.e. uptake of O2 from the atmosphere. This flux is in 
the opposite direction to the flux due to productivity and therefore may partly cancel out the 
increase in atmospheric O2 (and therefore APO). Once all fluxes are converted into 
comparable units, this gives a flux of 0.35 mol m-2 day-1 from the combination of ocean 
colour and NEMO PlankTOM data, compared to a flux of 0.27 mol m-2 day-1 calculated from 
the observed APO.  This results in a much smaller difference in magnitude of the flux. 
 
4.4.4 Ventilation events 
 
The fluxes resulting from the ventilation conceptual model and the fluxes derived from 
ΔAPO and the Jacob (1999) puff equation are presented in Table 7. The modelled flux in 
Table 7 is calculated using the mean ΔpO2 calculated from the two methods (typical monthly 
dissolved O2 concentration and real time float data). The two different methods of calculating 
ΔpO2 produce very similar results with differences of less than 1 mL L-1. In all but one case 
(02 November) the ΔpO2 calculated using typical monthly dissolved O2 concentrations is less 
than those calculated using the real time data. The differences in the calculated fluxes are 
small, therefore suggesting that typical monthly concentrations can be used without any 
significant loss of accuracy in the model. The modelled flux is, except for one outlier, always 
greater than the APO-derived flux. There is no correlation between the two fluxes.  

a b 



 

Date APO
(mol m

04 March 2014 -3.81
02 November 2014 -1.38
12 January 2015 -40.72
14 January 2015 -2.78
04 February 2015 -2.13
Table 7: Ventilation events and the O
observed ΔAPO at Mace Head, and the difference between these two fluxes.

 
As discussed above, ventilation events are highly seasonal as they are driven by high wind 
speeds and a deep mixed layer which brings O
understanding of ventilation events, we might expect the magnitude of the flux to be 
correlated with wind parameters. There is no correlation between APO
speed, or fetch. There is some correlation between modelled flux and wind speed, with a 
greater flux occurring at higher wind speeds. The exception to this pattern is the 14 January 
event which has a flux approximately equal to 12 January despite an average wind speed o
m s-1 higher. There is no correlation between modelled flux and fetch. The conceptual model 
fluxes do correlate with MLD, with the exception of 02 November 2014, however the APO
derived fluxes do not. This suggests that there is a complexity in the sys
ΔAPO observed at Mace Head which is not captured in the model. This could be related to 
the atmospheric transport, or the simplistic way of viewing the pO
upwelling. As with the productivity events, the area of deep 
 

Figure 16: MLD dataset for 04 March 2014, wi

 
The ventilation event on 04 March 2014 will be used as an example of the full event analysis 
undertaken. I visually identify the event and calculate the duration and change in APO as 
described above for productivity events. Similarly HYSPLIT is run to prod
back trajectory to confirm an ocean origin of the air masses. This is overlaid with the Hosada 
et al. (2010) MLD estimates, using the SeaDAS software (Figure 16). I take the mean of the 

APO-derived flux 
(mol m-2 day-1) 

Conceptual model flux 
(mol m-2 day-1) 

Difference (mol m
2

3.81 -11.10 14.92
1.38 -6.36 7.73
40.72 -5.06 45.78
2.78 -5.09 7.87
2.13 -8.03 10.17

Table 7: Ventilation events and the O2 air-sea flux calculated from the conceptual model and from the 
observed ΔAPO at Mace Head, and the difference between these two fluxes. 

As discussed above, ventilation events are highly seasonal as they are driven by high wind 
yer which brings O2-depleted waters to the surface. Based on this 

understanding of ventilation events, we might expect the magnitude of the flux to be 
correlated with wind parameters. There is no correlation between APO-derived flux and wind 

h. There is some correlation between modelled flux and wind speed, with a 
greater flux occurring at higher wind speeds. The exception to this pattern is the 14 January 
event which has a flux approximately equal to 12 January despite an average wind speed o

higher. There is no correlation between modelled flux and fetch. The conceptual model 
fluxes do correlate with MLD, with the exception of 02 November 2014, however the APO
derived fluxes do not. This suggests that there is a complexity in the system which drives the 
ΔAPO observed at Mace Head which is not captured in the model. This could be related to 
the atmospheric transport, or the simplistic way of viewing the pO2 changes caused by 
upwelling. As with the productivity events, the area of deep MLD could be related.

 

 
Figure 16: MLD dataset for 04 March 2014, with the back trajectory overlaid, produced in SeaDAS.

The ventilation event on 04 March 2014 will be used as an example of the full event analysis 
undertaken. I visually identify the event and calculate the duration and change in APO as 
described above for productivity events. Similarly HYSPLIT is run to prod
back trajectory to confirm an ocean origin of the air masses. This is overlaid with the Hosada 
et al. (2010) MLD estimates, using the SeaDAS software (Figure 16). I take the mean of the 
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Difference (mol m-

2 day-1) 
14.92 
7.73 
45.78 
7.87 
10.17 

sea flux calculated from the conceptual model and from the 

As discussed above, ventilation events are highly seasonal as they are driven by high wind 
depleted waters to the surface. Based on this 

understanding of ventilation events, we might expect the magnitude of the flux to be 
derived flux and wind 

h. There is some correlation between modelled flux and wind speed, with a 
greater flux occurring at higher wind speeds. The exception to this pattern is the 14 January 
event which has a flux approximately equal to 12 January despite an average wind speed of 6 

higher. There is no correlation between modelled flux and fetch. The conceptual model 
fluxes do correlate with MLD, with the exception of 02 November 2014, however the APO-

tem which drives the 
ΔAPO observed at Mace Head which is not captured in the model. This could be related to 

changes caused by 
MLD could be related. 

th the back trajectory overlaid, produced in SeaDAS. 

The ventilation event on 04 March 2014 will be used as an example of the full event analysis 
undertaken. I visually identify the event and calculate the duration and change in APO as 
described above for productivity events. Similarly HYSPLIT is run to produce an air mass 
back trajectory to confirm an ocean origin of the air masses. This is overlaid with the Hosada 
et al. (2010) MLD estimates, using the SeaDAS software (Figure 16). I take the mean of the 
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two MLD estimates; 716 m and 1169 m, giving a mean of 942.5 m. Using the World Ocean 
Atlas climatology I calculate the change in dissolved O2 between a MLD of 942.5 m and the 
surface during a typical March within the back trajectory. The climatology is averaged to 
standard depth levels and so the depth is slightly approximated; 950 m is used. The resulting 
change is -0.673 mL L-1. I use the ODV software to select profiling floats within the dates of 
the back trajectory. In this case there is only one float within the back trajectory area, on 01 
March. I calculate the change in dissolved O2 between a depth of 942.5 m and the surface (4 
m for this float), which is -0.84 mL L-1. I use the Garcia and Keeling (2001) and Wanninkopf 
(1992) equation (Equation 5) to calculate the air-sea flux that would result from these 
changes in dissolved O2. This involves calculating the mean SST and salinity within the back 
trajectory area from the Hosada et al. (2010) dataset. The resulting flux is -11.1 mol m-2 day-1. 
I calculate the APO derived flux as described for productivity events: -3.81 mol m-2 day-1. 
The discrepancy between the two fluxes is 7.29 mol m-2 day-1. Including the heat flux 
increases the discrepancy by 1 mol m-2 day-1 because the upwelling of cold water increases 
the gas solubility and therefore the uptake of O2, in addition to the effect of the change in 
dissolved O2 concentration.  
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5. Conclusions 

 

The aim of this project was to use continuous atmospheric measurements of CO2 and O2 

collected at Mace Head to investigate the seasonal cycles and short term ocean carbon cycle 

events. This was achieved using curve fitting programs to determine the detrended seasonal 

cycle and calculate the seasonal cycle amplitudes. I detected atmospheric events using the 

observed APO, air mass back trajectories and satellite image derived estimates of NPP and 

Argo float estimates of the MLD. I created conceptual models of productivity events and 

ventilation events and tested these against the observed events at Mace Head. 

 

5.1 Summary of key findings 

 

1. The season cycle amplitudes of the CO2, O2 and APO data are 17.78 ppm, 149 per 

meg and 76.57 per meg respectively. The APO seasonal cycle amplitude is slightly 

larger than half of the amplitude of the O2 seasonal cycle. The CO2 minimum occurs 

in August and the maximum in April. The O2 seasonal cycle is almost exactly the 

inverse: the maximum occurs in August however the minimum is in March. The APO 

seasonal cycle peaks in July and the minimum is in February. The timings of the 

seasonal cycles agree with previous Mace Head data (Sirignano et al., 2010). The CO2 

amplitude is larger than any recent data from European stations. The O2 seasonal 

amplitude is similar to the previous Mace Head value (142 ±6 per meg) and the F3 Oil 

Platform (144 ±2). The APO seasonal amplitude is similar to the previous Mace Head 

value, based on flask measurements, although slightly lower perhaps suggesting that 

there is less ocean variability in this particular year than the average year. 

2. Six productivity related atmospheric events and five ventilation related events were 

identified within the dataset. There is seasonality in the magnitude of the two types of 

events. This correlates well with the APO seasonal cycle; high productivity during 

spring and summer and strong ventilation/upwelling events during winter. (Note that 

the lack of satellite ocean colour data for the northern Atlantic means that no 

productivity events could be detected during winter). 

3. The oxidative ratios for atmospheric events are mostly negative because the carbon 

cycle processes involved in upwelling and productivity produce fluxes of O2 and CO2 

that move in opposite directions. There are two events with positive oxidative ratios 

which may be due to heat fluxes; changes in the solubility act on CO2 and O2 to 

produce fluxes in the same direction. I used NEMO PlankTOM modelled O2 fluxes to 

investigate this for the 04 March event. There is a relatively high flux compared to the 

surrounding area during this event of 1 mol m-2 day-1. Both events with a positive 

oxidative ratio are ventilation events, which are associated with a change in 

temperature alongside the change in dissolved O2 concentration and therefore it is 

likely that this sometimes results in heat fluxes. No defining characteristics of the 

events when this occurs can be determined based on the small sample size of two. 

4. The air-sea fluxes required to generate the observed APO excursions at Mace Head 

were calculated. Overall productivity related events have a higher observed change in 

APO and the magnitude of the required flux is also therefore larger. 
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5. I have used a conceptual model to investigate productivity-related events using 

HYSPLIT and NAME air mass back trajectories and satellite ocean colour data. In 

four out of the six events the conceptual model fits the observed APO change well, 

producing a flux within the same order of magnitude as the APO-derived flux. The 

other two events (09 July and 19 August) have modelled fluxes that are an order of 

magnitude larger than the APO-derived fluxes. This is similar to previous studies 

which used similar methodologies. I used the NEMO PlankTOM modelled heat flux 

data to investigate whether adding O2 fluxes due to heat fluxes improved the 

conceptual model. For the two events with the largest discrepancy between fluxes (09 

July and 19 August), including the heat fluxes does improve the model, however there 

is still a larger discrepancy than for any other events. In the majority of cases, 

including the heat fluxes within the model increases the difference between APO-

derived and modelled fluxes, as they drive sea to air fluxes of O2. 

6. I used a conceptual model to investigate ventilation-related atmospheric events, 

consisting of the HYSPLIT back trajectories, Argo MLD and dissolved O2 

concentrations from Argo data. The modelled flux is, except for one outlier, always 

greater than the APO-derived flux. Heat flux data is only available for 2014, therefore 

this could not be analysed for the majority of the ventilation events. For 04 March and 

02 November the heat fluxes reinforce the direction of the conceptual model flux and 

therefore increase the difference between the conceptual model flux and the APO-

derived flux. The model corresponds relatively well to the observed APO fluxes for 

all but one event. 

5.2 Limitations of the research 

 

The conclusions of this project are limited by the short term dataset which restricts the 

number of events available for analysis. All conclusions are based on a small sample size. I 

have considered several refinements to the methods used here which were not able to be 

implemented, and these may have increased the precision of flux calculations. 

 

5.3 Suggestions for further research 

 

I would suggest continuing this analysis on longer datasets and improving the methods of 

calculating both the APO-derived flux and the modelled flux by using NAME air mass back 

trajectories and investigating the effect of the area of productivity or MLD change in the 

ocean. N2O fluxes have been used by Nevison et al. (2012) to model the contribution of 

ventilation to events. This allows calculation of the productivity signal as a residual 

independent of the satellite ocean colour data. I suggest that this method is used in future 

research. My project has focussed solely on ocean carbon cycle processes however there is 

the opportunity for future research into coastal processes and the European fossil fuel signal. 
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